You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2014 lines
47 KiB

/*
* Copyright 2014-2015 Con Kolivas
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include <sys/types.h>
#include <sys/socket.h>
#ifdef HAVE_LINUX_UN_H
#include <linux/un.h>
#else
#include <sys/un.h>
#endif
#include <sys/file.h>
#include <sys/prctl.h>
#include <sys/stat.h>
#include <netdb.h>
#include <unistd.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>
#include <math.h>
#include <poll.h>
#include <arpa/inet.h>
#include "libckpool.h"
#include "sha2.h"
#include "utlist.h"
#ifndef UNIX_PATH_MAX
#define UNIX_PATH_MAX 108
#endif
/* We use a weak function as a simple printf within the library that can be
* overridden by however the outside executable wishes to do its logging. */
void __attribute__((weak)) logmsg(int __maybe_unused loglevel, const char *fmt, ...)
{
va_list ap;
char *buf;
va_start(ap, fmt);
VASPRINTF(&buf, fmt, ap);
va_end(ap);
printf("%s\n", buf);
free(buf);
}
void rename_proc(const char *name)
{
char buf[16];
snprintf(buf, 15, "ckp@%s", name);
buf[15] = '\0';
prctl(PR_SET_NAME, buf, 0, 0, 0);
}
void create_pthread(pthread_t *thread, void *(*start_routine)(void *), void *arg)
{
int ret = pthread_create(thread, NULL, start_routine, arg);
if (unlikely(ret))
quit(1, "Failed to pthread_create");
}
void join_pthread(pthread_t thread)
{
if (!pthread_kill(thread, 0))
pthread_join(thread, NULL);
}
struct ck_completion {
sem_t sem;
void (*fn)(void *fnarg);
void *fnarg;
};
static void *completion_thread(void *arg)
{
struct ck_completion *ckc = (struct ck_completion *)arg;
ckc->fn(ckc->fnarg);
cksem_post(&ckc->sem);
return NULL;
}
bool ck_completion_timeout(void *fn, void *fnarg, int timeout)
{
struct ck_completion ckc;
pthread_t pthread;
bool ret = false;
cksem_init(&ckc.sem);
ckc.fn = fn;
ckc.fnarg = fnarg;
pthread_create(&pthread, NULL, completion_thread, (void *)&ckc);
ret = cksem_mswait(&ckc.sem, timeout);
if (!ret)
pthread_join(pthread, NULL);
else
pthread_cancel(pthread);
return !ret;
}
int _cond_wait(pthread_cond_t *cond, mutex_t *lock, const char *file, const char *func, const int line)
{
int ret;
ret = pthread_cond_wait(cond, &lock->mutex);
lock->file = file;
lock->func = func;
lock->line = line;
return ret;
}
int _cond_timedwait(pthread_cond_t *cond, mutex_t *lock, const struct timespec *abstime, const char *file, const char *func, const int line)
{
int ret;
ret = pthread_cond_timedwait(cond, &lock->mutex, abstime);
lock->file = file;
lock->func = func;
lock->line = line;
return ret;
}
int _mutex_timedlock(mutex_t *lock, int timeout, const char *file, const char *func, const int line)
{
tv_t now;
ts_t abs;
int ret;
tv_time(&now);
tv_to_ts(&abs, &now);
abs.tv_sec += timeout;
ret = pthread_mutex_timedlock(&lock->mutex, &abs);
if (!ret) {
lock->file = file;
lock->func = func;
lock->line = line;
}
return ret;
}
/* Make every locking attempt warn if we're unable to get the lock for more
* than 10 seconds and fail if we can't get it for longer than a minute. */
void _mutex_lock(mutex_t *lock, const char *file, const char *func, const int line)
{
int ret, retries = 0;
retry:
ret = _mutex_timedlock(lock, 10, file, func, line);
if (unlikely(ret)) {
if (likely(ret == ETIMEDOUT)) {
LOGERR("WARNING: Prolonged mutex lock contention from %s %s:%d, held by %s %s:%d",
file, func, line, lock->file, lock->func, lock->line);
if (++retries < 6)
goto retry;
quitfrom(1, file, func, line, "FAILED TO GRAB MUTEX!");
}
quitfrom(1, file, func, line, "WTF MUTEX ERROR ON LOCK!");
}
}
/* Does not unset lock->file/func/line since they're only relevant when the lock is held */
void _mutex_unlock(mutex_t *lock, const char *file, const char *func, const int line)
{
if (unlikely(pthread_mutex_unlock(&lock->mutex)))
quitfrom(1, file, func, line, "WTF MUTEX ERROR ON UNLOCK!");
}
int _mutex_trylock(mutex_t *lock, __maybe_unused const char *file, __maybe_unused const char *func, __maybe_unused const int line)
{
int ret;
ret = pthread_mutex_trylock(&lock->mutex);
if (!ret) {
lock->file = file;
lock->func = func;
lock->line = line;
}
return ret;
}
void mutex_destroy(mutex_t *lock)
{
pthread_mutex_destroy(&lock->mutex);
}
static int wr_timedlock(pthread_rwlock_t *lock, int timeout)
{
tv_t now;
ts_t abs;
int ret;
tv_time(&now);
tv_to_ts(&abs, &now);
abs.tv_sec += timeout;
ret = pthread_rwlock_timedwrlock(lock, &abs);
return ret;
}
void _wr_lock(rwlock_t *lock, const char *file, const char *func, const int line)
{
int ret, retries = 0;
retry:
ret = wr_timedlock(&lock->rwlock, 10);
if (unlikely(ret)) {
if (likely(ret == ETIMEDOUT)) {
LOGERR("WARNING: Prolonged write lock contention from %s %s:%d, held by %s %s:%d",
file, func, line, lock->file, lock->func, lock->line);
if (++retries < 6)
goto retry;
quitfrom(1, file, func, line, "FAILED TO GRAB WRITE LOCK!");
}
quitfrom(1, file, func, line, "WTF ERROR ON WRITE LOCK!");
}
lock->file = file;
lock->func = func;
lock->line = line;
}
int _wr_trylock(rwlock_t *lock, __maybe_unused const char *file, __maybe_unused const char *func, __maybe_unused const int line)
{
int ret = pthread_rwlock_trywrlock(&lock->rwlock);
if (!ret) {
lock->file = file;
lock->func = func;
lock->line = line;
}
return ret;
}
static int rd_timedlock(pthread_rwlock_t *lock, int timeout)
{
tv_t now;
ts_t abs;
int ret;
tv_time(&now);
tv_to_ts(&abs, &now);
abs.tv_sec += timeout;
ret = pthread_rwlock_timedrdlock(lock, &abs);
return ret;
}
void _rd_lock(rwlock_t *lock, const char *file, const char *func, const int line)
{
int ret, retries = 0;
retry:
ret = rd_timedlock(&lock->rwlock, 10);
if (unlikely(ret)) {
if (likely(ret == ETIMEDOUT)) {
LOGERR("WARNING: Prolonged read lock contention from %s %s:%d, held by %s %s:%d",
file, func, line, lock->file, lock->func, lock->line);
if (++retries < 6)
goto retry;
quitfrom(1, file, func, line, "FAILED TO GRAB READ LOCK!");
}
quitfrom(1, file, func, line, "WTF ERROR ON READ LOCK!");
}
lock->file = file;
lock->func = func;
lock->line = line;
}
void _rw_unlock(rwlock_t *lock, const char *file, const char *func, const int line)
{
if (unlikely(pthread_rwlock_unlock(&lock->rwlock)))
quitfrom(1, file, func, line, "WTF RWLOCK ERROR ON UNLOCK!");
}
void _rd_unlock(rwlock_t *lock, const char *file, const char *func, const int line)
{
_rw_unlock(lock, file, func, line);
}
void _wr_unlock(rwlock_t *lock, const char *file, const char *func, const int line)
{
_rw_unlock(lock, file, func, line);
}
void _mutex_init(mutex_t *lock, const char *file, const char *func, const int line)
{
if (unlikely(pthread_mutex_init(&lock->mutex, NULL)))
quitfrom(1, file, func, line, "Failed to pthread_mutex_init");
}
void _rwlock_init(rwlock_t *lock, const char *file, const char *func, const int line)
{
if (unlikely(pthread_rwlock_init(&lock->rwlock, NULL)))
quitfrom(1, file, func, line, "Failed to pthread_rwlock_init");
}
void _cond_init(pthread_cond_t *cond, const char *file, const char *func, const int line)
{
if (unlikely(pthread_cond_init(cond, NULL)))
quitfrom(1, file, func, line, "Failed to pthread_cond_init!");
}
void _cklock_init(cklock_t *lock, const char *file, const char *func, const int line)
{
_mutex_init(&lock->mutex, file, func, line);
_rwlock_init(&lock->rwlock, file, func, line);
}
/* Read lock variant of cklock. Cannot be promoted. */
void _ck_rlock(cklock_t *lock, const char *file, const char *func, const int line)
{
_mutex_lock(&lock->mutex, file, func, line);
_rd_lock(&lock->rwlock, file, func, line);
_mutex_unlock(&lock->mutex, file, func, line);
}
/* Write lock variant of cklock */
void _ck_wlock(cklock_t *lock, const char *file, const char *func, const int line)
{
_mutex_lock(&lock->mutex, file, func, line);
_wr_lock(&lock->rwlock, file, func, line);
}
/* Downgrade write variant to a read lock */
void _ck_dwlock(cklock_t *lock, const char *file, const char *func, const int line)
{
_wr_unlock(&lock->rwlock, file, func, line);
_rd_lock(&lock->rwlock, file, func, line);
_mutex_unlock(&lock->mutex, file, func, line);
}
/* Demote a write variant to an intermediate variant */
void _ck_dwilock(cklock_t *lock, const char *file, const char *func, const int line)
{
_wr_unlock(&lock->rwlock, file, func, line);
}
void _ck_runlock(cklock_t *lock, const char *file, const char *func, const int line)
{
_rd_unlock(&lock->rwlock, file, func, line);
}
void _ck_wunlock(cklock_t *lock, const char *file, const char *func, const int line)
{
_wr_unlock(&lock->rwlock, file, func, line);
_mutex_unlock(&lock->mutex, file, func, line);
}
void cklock_destroy(cklock_t *lock)
{
pthread_rwlock_destroy(&lock->rwlock.rwlock);
pthread_mutex_destroy(&lock->mutex.mutex);
}
void _cksem_init(sem_t *sem, const char *file, const char *func, const int line)
{
int ret;
if ((ret = sem_init(sem, 0, 0)))
quitfrom(1, file, func, line, "Failed to sem_init ret=%d errno=%d", ret, errno);
}
void _cksem_post(sem_t *sem, const char *file, const char *func, const int line)
{
if (unlikely(sem_post(sem)))
quitfrom(1, file, func, line, "Failed to sem_post errno=%d sem=0x%p", errno, sem);
}
void _cksem_wait(sem_t *sem, const char *file, const char *func, const int line)
{
if (unlikely(sem_wait(sem))) {
if (errno == EINTR)
return;
quitfrom(1, file, func, line, "Failed to sem_wait errno=%d sem=0x%p", errno, sem);
}
}
int _cksem_mswait(sem_t *sem, int ms, const char *file, const char *func, const int line)
{
ts_t abs_timeout, ts_now;
tv_t tv_now;
int ret;
tv_time(&tv_now);
tv_to_ts(&ts_now, &tv_now);
ms_to_ts(&abs_timeout, ms);
timeraddspec(&abs_timeout, &ts_now);
ret = sem_timedwait(sem, &abs_timeout);
if (ret) {
if (likely(errno == ETIMEDOUT))
return ETIMEDOUT;
if (errno == EINTR)
return EINTR;
quitfrom(1, file, func, line, "Failed to sem_timedwait errno=%d sem=0x%p", errno, sem);
}
return 0;
}
void _cksem_destroy(sem_t *sem, const char *file, const char *func, const int line)
{
if (unlikely(sem_destroy(sem)))
quitfrom(1, file, func, line, "Failed to sem_destroy errno=%d sem=0x%p", errno, sem);
}
/* Extract just the url and port information from a url string, allocating
* heap memory for sockaddr_url and sockaddr_port. */
bool extract_sockaddr(char *url, char **sockaddr_url, char **sockaddr_port)
{
char *url_begin, *url_end, *ipv6_begin, *ipv6_end, *port_start = NULL;
int url_len, port_len = 0;
char *url_address, *port;
size_t hlen;
if (!url) {
LOGWARNING("Null length url string passed to extract_sockaddr");
return false;
}
url_begin = strstr(url, "//");
if (!url_begin)
url_begin = url;
else
url_begin += 2;
/* Look for numeric ipv6 entries */
ipv6_begin = strstr(url_begin, "[");
ipv6_end = strstr(url_begin, "]");
if (ipv6_begin && ipv6_end && ipv6_end > ipv6_begin)
url_end = strstr(ipv6_end, ":");
else
url_end = strstr(url_begin, ":");
if (url_end) {
url_len = url_end - url_begin;
port_len = strlen(url_begin) - url_len - 1;
if (port_len < 1)
return false;
port_start = url_end + 1;
} else
url_len = strlen(url_begin);
/* Get rid of the [] */
if (ipv6_begin && ipv6_end && ipv6_end > ipv6_begin){
url_len -= 2;
url_begin++;
}
if (url_len < 1) {
LOGWARNING("Null length URL passed to extract_sockaddr");
return false;
}
hlen = url_len + 1;
url_address = ckalloc(hlen);
sprintf(url_address, "%.*s", url_len, url_begin);
port = ckalloc(8);
if (port_len) {
char *slash;
snprintf(port, 6, "%.*s", port_len, port_start);
slash = strchr(port, '/');
if (slash)
*slash = '\0';
} else
strcpy(port, "80");
*sockaddr_port = port;
*sockaddr_url = url_address;
return true;
}
/* Convert a sockaddr structure into a url and port. URL should be a string of
* INET6_ADDRSTRLEN size, port at least a string of 6 bytes */
bool url_from_sockaddr(const struct sockaddr *addr, char *url, char *port)
{
int port_no = 0;
switch(addr->sa_family) {
const struct sockaddr_in *inet4_in;
const struct sockaddr_in6 *inet6_in;
case AF_INET:
inet4_in = (struct sockaddr_in *)addr;
inet_ntop(AF_INET, &inet4_in->sin_addr, url, INET6_ADDRSTRLEN);
port_no = htons(inet4_in->sin_port);
break;
case AF_INET6:
inet6_in = (struct sockaddr_in6 *)addr;
inet_ntop(AF_INET6, &inet6_in->sin6_addr, url, INET6_ADDRSTRLEN);
port_no = htons(inet6_in->sin6_port);
break;
default:
return false;
}
sprintf(port, "%d", port_no);
return true;
}
bool addrinfo_from_url(const char *url, const char *port, struct addrinfo *addrinfo)
{
struct addrinfo *servinfo, hints;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
servinfo = addrinfo;
if (getaddrinfo(url, port, &hints, &servinfo) != 0)
return false;
if (!servinfo)
return false;
memcpy(addrinfo, servinfo->ai_addr, servinfo->ai_addrlen);
freeaddrinfo(servinfo);
return true;
}
/* Extract a resolved url and port from a serverurl string. newurl must be
* a string of at least INET6_ADDRSTRLEN and newport at least 6 bytes. */
bool url_from_serverurl(char *serverurl, char *newurl, char *newport)
{
char *url = NULL, *port = NULL;
struct addrinfo addrinfo;
bool ret = false;
if (!extract_sockaddr(serverurl, &url, &port)) {
LOGWARNING("Failed to extract server address from %s", serverurl);
goto out;
}
if (!addrinfo_from_url(url, port, &addrinfo)) {
LOGWARNING("Failed to extract addrinfo from url %s:%s", url, port);
goto out;
}
if (!url_from_sockaddr((const struct sockaddr *)&addrinfo, newurl, newport)) {
LOGWARNING("Failed to extract url from sockaddr for original url: %s:%s",
url, port);
goto out;
}
ret = true;
out:
dealloc(url);
dealloc(port);
return ret;
}
/* Convert a socket into a url and port. URL should be a string of
* INET6_ADDRSTRLEN size, port at least a string of 6 bytes */
bool url_from_socket(const int sockd, char *url, char *port)
{
socklen_t addrlen = sizeof(struct sockaddr);
struct sockaddr addr;
if (sockd < 1)
return false;
if (getsockname(sockd, &addr, &addrlen))
return false;
if (!url_from_sockaddr(&addr, url, port))
return false;
return true;
}
void keep_sockalive(int fd)
{
const int tcp_one = 1;
const int tcp_keepidle = 45;
const int tcp_keepintvl = 30;
setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, (const void *)&tcp_one, sizeof(tcp_one));
setsockopt(fd, SOL_TCP, TCP_NODELAY, (const void *)&tcp_one, sizeof(tcp_one));
setsockopt(fd, SOL_TCP, TCP_KEEPCNT, &tcp_one, sizeof(tcp_one));
setsockopt(fd, SOL_TCP, TCP_KEEPIDLE, &tcp_keepidle, sizeof(tcp_keepidle));
setsockopt(fd, SOL_TCP, TCP_KEEPINTVL, &tcp_keepintvl, sizeof(tcp_keepintvl));
}
void nolinger_socket(int fd)
{
const struct linger so_linger = { 1, 0 };
setsockopt(fd, SOL_SOCKET, SO_LINGER, &so_linger, sizeof(so_linger));
}
void noblock_socket(int fd)
{
int flags = fcntl(fd, F_GETFL, 0);
fcntl(fd, F_SETFL, O_NONBLOCK | flags);
}
void block_socket(int fd)
{
int flags = fcntl(fd, F_GETFL, 0);
fcntl(fd, F_SETFL, flags & ~O_NONBLOCK);
}
void _close(int *fd, const char *file, const char *func, const int line)
{
if (*fd < 0)
return;
LOGDEBUG("Closing file handle %d", *fd);
if (unlikely(close(*fd)))
LOGWARNING("Close of fd %d failed with errno %d:%s from %s %s:%d",
*fd, errno, strerror(errno), file, func, line);
*fd = -1;
}
int bind_socket(char *url, char *port)
{
struct addrinfo servinfobase, *servinfo, hints, *p;
int ret, sockd = -1;
const int on = 1;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
servinfo = &servinfobase;
if (getaddrinfo(url, port, &hints, &servinfo) != 0) {
LOGWARNING("Failed to resolve (?wrong URL) %s:%s", url, port);
return sockd;
}
for (p = servinfo; p != NULL; p = p->ai_next) {
sockd = socket(p->ai_family, p->ai_socktype, p->ai_protocol);
if (sockd > 0)
break;
}
if (sockd < 1 || p == NULL) {
LOGWARNING("Failed to open socket for %s:%s", url, port);
goto out;
}
setsockopt(sockd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
ret = bind(sockd, p->ai_addr, p->ai_addrlen);
if (ret < 0) {
LOGWARNING("Failed to bind socket for %s:%s", url, port);
Close(sockd);
goto out;
}
out:
freeaddrinfo(servinfo);
return sockd;
}
int connect_socket(char *url, char *port)
{
struct addrinfo servinfobase, *servinfo, hints, *p;
int sockd = -1;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
memset(&servinfobase, 0, sizeof(struct addrinfo));
servinfo = &servinfobase;
if (getaddrinfo(url, port, &hints, &servinfo) != 0) {
LOGWARNING("Failed to resolve (?wrong URL) %s:%s", url, port);
goto out;
}
for (p = servinfo; p != NULL; p = p->ai_next) {
sockd = socket(p->ai_family, p->ai_socktype, p->ai_protocol);
if (sockd == -1) {
LOGDEBUG("Failed socket");
continue;
}
/* Iterate non blocking over entries returned by getaddrinfo
* to cope with round robin DNS entries, finding the first one
* we can connect to quickly. */
noblock_socket(sockd);
if (connect(sockd, p->ai_addr, p->ai_addrlen) == -1) {
int selret;
if (!sock_connecting()) {
Close(sockd);
LOGDEBUG("Failed sock connect");
continue;
}
selret = wait_write_select(sockd, 5);
if (selret > 0) {
socklen_t len;
int err, n;
len = sizeof(err);
n = getsockopt(sockd, SOL_SOCKET, SO_ERROR, (void *)&err, &len);
if (!n && !err) {
LOGDEBUG("Succeeded delayed connect");
block_socket(sockd);
break;
}
}
Close(sockd);
LOGDEBUG("Select timeout/failed connect");
continue;
}
LOGDEBUG("Succeeded immediate connect");
if (sockd >= 0)
block_socket(sockd);
break;
}
if (p == NULL) {
LOGNOTICE("Failed to connect to %s:%s", url, port);
sockd = -1;
}
freeaddrinfo(servinfo);
out:
return sockd;
}
int write_socket(int fd, const void *buf, size_t nbyte)
{
int ret;
ret = wait_write_select(fd, 5);
if (ret < 1) {
if (!ret)
LOGNOTICE("Select timed out in write_socket");
else
LOGNOTICE("Select failed in write_socket");
goto out;
}
ret = write_length(fd, buf, nbyte);
if (ret < 0)
LOGNOTICE("Failed to write in write_socket");
out:
return ret;
}
void empty_socket(int fd)
{
int ret;
if (fd < 1)
return;
do {
char buf[PAGESIZE];
ret = wait_read_select(fd, 0);
if (ret > 0) {
ret = recv(fd, buf, PAGESIZE - 1, 0);
buf[ret] = 0;
LOGDEBUG("Discarding: %s", buf);
}
} while (ret > 0);
}
void _close_unix_socket(int *sockd, const char *server_path)
{
LOGDEBUG("Closing unix socket %d %s", *sockd, server_path);
_Close(sockd);
}
int _open_unix_server(const char *server_path, const char *file, const char *func, const int line)
{
mode_t mode = S_IRWXU | S_IRWXG; // Owner+Group RWX
struct sockaddr_un serveraddr;
int sockd = -1, len, ret;
struct stat buf;
if (likely(server_path)) {
len = strlen(server_path);
if (unlikely(len < 1 || len >= UNIX_PATH_MAX)) {
LOGERR("Invalid server path length %d in open_unix_server", len);
goto out;
}
} else {
LOGERR("Null passed as server_path to open_unix_server");
goto out;
}
if (!stat(server_path, &buf)) {
if ((buf.st_mode & S_IFMT) == S_IFSOCK) {
ret = unlink(server_path);
if (ret) {
LOGERR("Unlink of %s failed in open_unix_server", server_path);
goto out;
}
LOGDEBUG("Unlinked %s to recreate socket", server_path);
} else {
LOGWARNING("%s already exists and is not a socket, not removing",
server_path);
goto out;
}
}
sockd = socket(AF_UNIX, SOCK_STREAM, 0);
if (unlikely(sockd < 0)) {
LOGERR("Failed to open socket in open_unix_server");
goto out;
}
memset(&serveraddr, 0, sizeof(serveraddr));
serveraddr.sun_family = AF_UNIX;
strcpy(serveraddr.sun_path, server_path);
ret = bind(sockd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));
if (unlikely(ret < 0)) {
LOGERR("Failed to bind to socket in open_unix_server");
close_unix_socket(sockd, server_path);
sockd = -1;
goto out;
}
ret = chmod(server_path, mode);
if (unlikely(ret < 0))
LOGERR("Failed to set mode in open_unix_server - continuing");
ret = listen(sockd, 10);
if (unlikely(ret < 0)) {
LOGERR("Failed to listen to socket in open_unix_server");
close_unix_socket(sockd, server_path);
sockd = -1;
goto out;
}
LOGDEBUG("Opened server path %s successfully on socket %d", server_path, sockd);
out:
if (unlikely(sockd == -1))
LOGERR("Failure in open_unix_server from %s %s:%d", file, func, line);
return sockd;
}
int _open_unix_client(const char *server_path, const char *file, const char *func, const int line)
{
struct sockaddr_un serveraddr;
int sockd = -1, len, ret;
if (likely(server_path)) {
len = strlen(server_path);
if (unlikely(len < 1 || len >= UNIX_PATH_MAX)) {
LOGERR("Invalid server path length %d in open_unix_client", len);
goto out;
}
} else {
LOGERR("Null passed as server_path to open_unix_client");
goto out;
}
sockd = socket(AF_UNIX, SOCK_STREAM, 0);
if (unlikely(sockd < 0)) {
LOGERR("Failed to open socket in open_unix_client");
goto out;
}
memset(&serveraddr, 0, sizeof(serveraddr));
serveraddr.sun_family = AF_UNIX;
strcpy(serveraddr.sun_path, server_path);
ret = connect(sockd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));
if (unlikely(ret < 0)) {
LOGERR("Failed to bind to socket in open_unix_client");
Close(sockd);
goto out;
}
LOGDEBUG("Opened client path %s successfully on socket %d", server_path, sockd);
out:
if (unlikely(sockd == -1))
LOGERR("Failure in open_unix_client from %s %s:%d", file, func, line);
return sockd;
}
/* Wait till a socket has been closed at the other end */
int wait_close(int sockd, int timeout)
{
struct pollfd sfd;
int ret;
if (unlikely(sockd < 0))
return -1;
sfd.fd = sockd;
sfd.events = POLLRDHUP;
sfd.revents = 0;
timeout *= 1000;
ret = poll(&sfd, 1, timeout);
if (ret < 1)
return 0;
return sfd.revents & (POLLHUP | POLLRDHUP | POLLERR);
}
/* Emulate a select read wait for high fds that select doesn't support */
int wait_read_select(int sockd, float timeout)
{
struct pollfd sfd;
int ret = -1;
if (unlikely(sockd < 0))
goto out;
sfd.fd = sockd;
sfd.events = POLLIN | POLLRDHUP;
sfd.revents = 0;
timeout *= 1000;
ret = poll(&sfd, 1, timeout);
if (ret && !(sfd.revents & POLLIN))
ret = -1;
out:
return ret;
}
int read_length(int sockd, void *buf, int len)
{
int ret, ofs = 0;
if (unlikely(len < 1)) {
LOGWARNING("Invalid read length of %d requested in read_length", len);
return -1;
}
if (unlikely(sockd < 0))
return -1;
while (len) {
ret = recv(sockd, buf + ofs, len, MSG_WAITALL);
if (unlikely(ret < 1))
return -1;
ofs += ret;
len -= ret;
}
return ofs;
}
/* Use a standard message across the unix sockets:
* 4 byte length of message as little endian encoded uint32_t followed by the
* string. Return NULL in case of failure. */
char *_recv_unix_msg(int sockd, int timeout1, int timeout2, const char *file, const char *func, const int line)
{
char *buf = NULL;
uint32_t msglen;
int ret;
ret = wait_read_select(sockd, timeout1);
if (unlikely(ret < 1)) {
LOGERR("Select1 failed in recv_unix_msg");
goto out;
}
/* Get message length */
ret = read_length(sockd, &msglen, 4);
if (unlikely(ret < 4)) {
LOGERR("Failed to read 4 byte length in recv_unix_msg");
goto out;
}
msglen = le32toh(msglen);
if (unlikely(msglen < 1 || msglen > 0x80000000)) {
LOGWARNING("Invalid message length %u sent to recv_unix_msg", msglen);
goto out;
}
ret = wait_read_select(sockd, timeout2);
if (unlikely(ret < 1)) {
LOGERR("Select2 failed in recv_unix_msg");
goto out;
}
buf = ckzalloc(msglen + 1);
ret = read_length(sockd, buf, msglen);
if (unlikely(ret < (int)msglen)) {
LOGERR("Failed to read %u bytes in recv_unix_msg", msglen);
dealloc(buf);
}
out:
shutdown(sockd, SHUT_RD);
if (unlikely(!buf))
LOGERR("Failure in recv_unix_msg from %s %s:%d", file, func, line);
return buf;
}
/* Emulate a select write wait for high fds that select doesn't support */
int wait_write_select(int sockd, float timeout)
{
struct pollfd sfd;
int ret = -1;
if (unlikely(sockd < 0))
goto out;
sfd.fd = sockd;
sfd.events = POLLOUT | POLLRDHUP;
sfd.revents = 0;
timeout *= 1000;
ret = poll(&sfd, 1, timeout);
if (ret && !(sfd.revents & POLLOUT))
ret = -1;
out:
return ret;
}
int write_length(int sockd, const void *buf, int len)
{
int ret, ofs = 0;
if (unlikely(len < 1)) {
LOGWARNING("Invalid write length of %d requested in write_length", len);
return -1;
}
if (unlikely(sockd < 0))
return -1;
while (len) {
ret = write(sockd, buf + ofs, len);
if (unlikely(ret < 0))
return -1;
ofs += ret;
len -= ret;
}
return ofs;
}
bool _send_unix_msg(int sockd, const char *buf, const char *file, const char *func, const int line)
{
uint32_t msglen, len;
bool retval = false;
int ret, ern;
if (unlikely(sockd < 0)) {
LOGWARNING("Attempting to send unix message to invalidated sockd %d", sockd);
goto out;
}
if (unlikely(!buf)) {
LOGWARNING("Null message sent to send_unix_msg");
goto out;
}
len = strlen(buf);
if (unlikely(!len)) {
LOGWARNING("Zero length message sent to send_unix_msg");
goto out;
}
msglen = htole32(len);
ret = wait_write_select(sockd, 5);
if (unlikely(ret < 1)) {
ern = errno;
LOGERR("Select1 failed in send_unix_msg (%d)", ern);
goto out;
}
ret = write_length(sockd, &msglen, 4);
if (unlikely(ret < 4)) {
ern = errno;
LOGERR("Failed to write 4 byte length in send_unix_msg (%d)", ern);
goto out;
}
ret = wait_write_select(sockd, 5);
if (unlikely(ret < 1)) {
ern = errno;
LOGERR("Select2 failed in send_unix_msg (%d)", ern);
goto out;
}
ret = write_length(sockd, buf, len);
if (unlikely(ret < 0)) {
ern = errno;
LOGERR("Failed to write %d bytes in send_unix_msg (%d)", len, ern);
goto out;
}
retval = true;
out:
shutdown(sockd, SHUT_WR);
if (unlikely(!retval))
LOGERR("Failure in send_unix_msg from %s %s:%d", file, func, line);
return retval;
}
bool _send_unix_data(int sockd, const struct msghdr *msg, const char *file, const char *func, const int line)
{
bool retval = false;
int ret;
if (unlikely(!msg)) {
LOGWARNING("Null message sent to send_unix_data");
goto out;
}
ret = wait_write_select(sockd, 5);
if (unlikely(ret < 1)) {
LOGERR("Select1 failed in send_unix_data");
goto out;
}
ret = sendmsg(sockd, msg, 0);
if (unlikely(ret < 1)) {
LOGERR("Failed to send in send_unix_data");
goto out;
}
retval = true;
out:
shutdown(sockd, SHUT_WR);
if (unlikely(!retval))
LOGERR("Failure in send_unix_data from %s %s:%d", file, func, line);
return retval;
}
bool _recv_unix_data(int sockd, struct msghdr *msg, const char *file, const char *func, const int line)
{
bool retval = false;
int ret;
ret = wait_read_select(sockd, 5);
if (unlikely(ret < 1)) {
LOGERR("Select1 failed in recv_unix_data");
goto out;
}
ret = recvmsg(sockd, msg, MSG_WAITALL);
if (unlikely(ret < 0)) {
LOGERR("Failed to recv in recv_unix_data");
goto out;
}
retval = true;
out:
shutdown(sockd, SHUT_RD);
if (unlikely(!retval))
LOGERR("Failure in recv_unix_data from %s %s:%d", file, func, line);
return retval;
}
#define CONTROLLLEN CMSG_LEN(sizeof(int))
#define MAXLINE 4096
/* Send a msghdr containing fd via the unix socket sockd */
bool _send_fd(int fd, int sockd, const char *file, const char *func, const int line)
{
struct cmsghdr *cmptr = ckzalloc(CONTROLLLEN);
struct iovec iov[1];
struct msghdr msg;
char buf[2];
bool ret;
int *cm;
memset(&msg, 0, sizeof(struct msghdr));
iov[0].iov_base = buf;
iov[0].iov_len = 2;
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_controllen = CONTROLLLEN;
msg.msg_control = cmptr;
cmptr->cmsg_level = SOL_SOCKET;
cmptr->cmsg_type = SCM_RIGHTS;
cmptr->cmsg_len = CONTROLLLEN;
cm = (int *)CMSG_DATA(cmptr);
*cm = fd;
buf[1] = 0;
buf[0] = 0;
ret = send_unix_data(sockd, &msg);
free(cmptr);
if (!ret)
LOGERR("Failed to send_unix_data in send_fd from %s %s:%d", file, func, line);
return ret;
}
/* Receive an fd by reading a msghdr from the unix socket sockd */
int _get_fd(int sockd, const char *file, const char *func, const int line)
{
int newfd = -1;
char buf[MAXLINE];
struct iovec iov[1];
struct msghdr msg;
struct cmsghdr *cmptr = ckzalloc(CONTROLLLEN);
int *cm;
memset(&msg, 0, sizeof(struct msghdr));
iov[0].iov_base = buf;
iov[0].iov_len = sizeof(buf);
msg.msg_iov = iov;
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_control = cmptr;
msg.msg_controllen = CONTROLLLEN;
if (!recv_unix_data(sockd, &msg)) {
LOGERR("Failed to recv_unix_data in get_fd from %s %s:%d", file, func, line);
goto out;
}
out:
cm = (int *)CMSG_DATA(cmptr);
newfd = *cm;
free(cmptr);
return newfd;
}
void _json_check(json_t *val, json_error_t *err, const char *file, const char *func, const int line)
{
if (likely(val))
return;
LOGERR("Invalid json line:%d col:%d pos:%d text: %s from %s %s:%d",
err->line, err->column, err->position, err->text,
file, func, line);
}
/* Extracts a string value from a json array with error checking. To be used
* when the value of the string returned is only examined and not to be stored.
* See json_array_string below */
const char *__json_array_string(json_t *val, unsigned int entry)
{
json_t *arr_entry;
if (json_is_null(val))
return NULL;
if (!json_is_array(val))
return NULL;
if (entry > json_array_size(val))
return NULL;
arr_entry = json_array_get(val, entry);
if (!json_is_string(arr_entry))
return NULL;
return json_string_value(arr_entry);
}
/* Creates a freshly malloced dup of __json_array_string */
char *json_array_string(json_t *val, unsigned int entry)
{
const char *buf = __json_array_string(val, entry);
if (buf)
return strdup(buf);
return NULL;
}
json_t *json_object_dup(json_t *val, const char *entry)
{
return json_copy(json_object_get(val, entry));
}
char *rotating_filename(const char *path, time_t when)
{
char *filename;
struct tm tm;
gmtime_r(&when, &tm);
ASPRINTF(&filename, "%s%04d%02d%02d%02d.log", path, tm.tm_year + 1900, tm.tm_mon + 1,
tm.tm_mday, tm.tm_hour);
return filename;
}
/* Creates a logfile entry which changes filename hourly with exclusive access */
bool rotating_log(const char *path, const char *msg)
{
mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
char *filename;
FILE *fp;
int fd;
bool ok = false;
filename = rotating_filename(path, time(NULL));
fd = open(filename, O_CREAT | O_RDWR | O_CLOEXEC , mode);
if (unlikely(fd == -1)) {
LOGERR("Failed to open %s in rotating_log!", filename);
goto stageleft;
}
fp = fdopen(fd, "ae");
if (unlikely(!fp)) {
Close(fd);
LOGERR("Failed to fdopen %s in rotating_log!", filename);
goto stageleft;
}
if (unlikely(flock(fd, LOCK_EX))) {
fclose(fp);
LOGERR("Failed to flock %s in rotating_log!", filename);
goto stageleft;
}
fprintf(fp, "%s\n", msg);
fclose(fp);
ok = true;
stageleft:
free(filename);
return ok;
}
/* Align a size_t to 4 byte boundaries for fussy arches */
void align_len(size_t *len)
{
if (*len % 4)
*len += 4 - (*len % 4);
}
/* Malloc failure should be fatal but keep backing off and retrying as the OS
* will kill us eventually if it can't recover. */
void realloc_strcat(char **ptr, const char *s)
{
size_t old, new, len;
int backoff = 1;
void *new_ptr;
char *ofs;
if (unlikely(!*s)) {
LOGWARNING("Passed empty pointer to realloc_strcat");
return;
}
new = strlen(s);
if (unlikely(!new)) {
LOGWARNING("Passed empty string to realloc_strcat");
return;
}
if (!*ptr)
old = 0;
else
old = strlen(*ptr);
len = old + new + 1;
align_len(&len);
while (42) {
new_ptr = realloc(*ptr, len);
if (likely(new_ptr))
break;
if (backoff == 1)
fprintf(stderr, "Failed to realloc %d, retrying\n", (int)len);
cksleep_ms(backoff);
backoff <<= 1;
}
*ptr = new_ptr;
ofs = *ptr + old;
sprintf(ofs, "%s", s);
}
void trail_slash(char **buf)
{
int ofs;
ofs = strlen(*buf) - 1;
if (memcmp(*buf + ofs, "/", 1))
realloc_strcat(buf, "/");
}
void *_ckalloc(size_t len, const char *file, const char *func, const int line)
{
int backoff = 1;
void *ptr;
align_len(&len);
while (42) {
ptr = malloc(len);
if (likely(ptr))
break;
if (backoff == 1) {
fprintf(stderr, "Failed to ckalloc %d, retrying from %s %s:%d\n",
(int)len, file, func, line);
}
cksleep_ms(backoff);
backoff <<= 1;
}
return ptr;
}
void *json_ckalloc(size_t size)
{
return _ckalloc(size, __FILE__, __func__, __LINE__);
}
void *_ckzalloc(size_t len, const char *file, const char *func, const int line)
{
int backoff = 1;
void *ptr;
align_len(&len);
while (42) {
ptr = calloc(len, 1);
if (likely(ptr))
break;
if (backoff == 1) {
fprintf(stderr, "Failed to ckzalloc %d, retrying from %s %s:%d\n",
(int)len, file, func, line);
}
cksleep_ms(backoff);
backoff <<= 1;
}
return ptr;
}
/* Adequate size s==len*2 + 1 must be alloced to use this variant */
void __bin2hex(void *vs, const void *vp, size_t len)
{
static const char hex[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};
const uchar *p = vp;
uchar *s = vs;
int i;
for (i = 0; i < (int)len; i++) {
*s++ = hex[p[i] >> 4];
*s++ = hex[p[i] & 0xF];
}
*s++ = '\0';
}
/* Returns a malloced array string of a binary value of arbitrary length. The
* array is rounded up to a 4 byte size to appease architectures that need
* aligned array sizes */
void *bin2hex(const void *vp, size_t len)
{
const uchar *p = vp;
size_t slen;
uchar *s;
slen = len * 2 + 1;
s = ckzalloc(slen);
__bin2hex(s, p, len);
return s;
}
const int hex2bin_tbl[256] = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1,
-1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
};
bool _validhex(const char *buf, const char *file, const char *func, const int line)
{
unsigned int i, slen;
bool ret = false;
slen = strlen(buf);
if (!slen || slen % 2) {
LOGDEBUG("Invalid hex due to length %u from %s %s:%d", slen, file, func, line);
goto out;
}
for (i = 0; i < slen; i++) {
uchar idx = buf[i];
if (hex2bin_tbl[idx] == -1) {
LOGDEBUG("Invalid hex due to value %u at offset %d from %s %s:%d",
idx, i, file, func, line);
goto out;
}
}
ret = true;
out:
return ret;
}
/* Does the reverse of bin2hex but does not allocate any ram */
bool _hex2bin(void *vp, const void *vhexstr, size_t len, const char *file, const char *func, const int line)
{
const uchar *hexstr = vhexstr;
int nibble1, nibble2;
bool ret = false;
uchar *p = vp;
uchar idx;
while (*hexstr && len) {
if (unlikely(!hexstr[1])) {
LOGWARNING("Early end of string in hex2bin from %s %s:%d", file, func, line);
return ret;
}
idx = *hexstr++;
nibble1 = hex2bin_tbl[idx];
idx = *hexstr++;
nibble2 = hex2bin_tbl[idx];
if (unlikely((nibble1 < 0) || (nibble2 < 0))) {
LOGWARNING("Invalid binary encoding in hex2bin from %s %s:%d", file, func, line);
return ret;
}
*p++ = (((uchar)nibble1) << 4) | ((uchar)nibble2);
--len;
}
if (likely(len == 0 && *hexstr == 0))
ret = true;
if (!ret)
LOGWARNING("Failed hex2bin decode from %s %s:%d", file, func, line);
return ret;
}
static const int b58tobin_tbl[] = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, -1, -1, -1,
-1, 9, 10, 11, 12, 13, 14, 15, 16, -1, 17, 18, 19, 20, 21, -1,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, -1, -1, -1, -1, -1,
-1, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, -1, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57
};
/* b58bin should always be at least 25 bytes long and already checked to be
* valid. */
void b58tobin(char *b58bin, const char *b58)
{
uint32_t c, bin32[7];
int len, i, j;
uint64_t t;
memset(bin32, 0, 7 * sizeof(uint32_t));
len = strlen((const char *)b58);
for (i = 0; i < len; i++) {
c = b58[i];
c = b58tobin_tbl[c];
for (j = 6; j >= 0; j--) {
t = ((uint64_t)bin32[j]) * 58 + c;
c = (t & 0x3f00000000ull) >> 32;
bin32[j] = t & 0xffffffffull;
}
}
*(b58bin++) = bin32[0] & 0xff;
for (i = 1; i < 7; i++) {
*((uint32_t *)b58bin) = htobe32(bin32[i]);
b58bin += sizeof(uint32_t);
}
}
/* Does a safe string comparison tolerating zero length and NULL strings */
int safecmp(const char *a, const char *b)
{
int lena, lenb;
if (unlikely(!a || !b)) {
if (a != b)
return -1;
return 0;
}
lena = strlen(a);
lenb = strlen(b);
if (unlikely(!lena || !lenb)) {
if (lena != lenb)
return -1;
return 0;
}
return (strcmp(a, b));
}
/* Returns whether there is a case insensitive match of buf to cmd, safely
* handling NULL or zero length strings. */
bool cmdmatch(const char *buf, const char *cmd)
{
int cmdlen, buflen;
if (!buf)
return false;
buflen = strlen(buf);
if (!buflen)
return false;
cmdlen = strlen(cmd);
if (buflen < cmdlen)
return false;
return !strncasecmp(buf, cmd, cmdlen);
}
static const char base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
/* Return a malloced string of *src encoded into mime base 64 */
char *http_base64(const char *src)
{
char *str, *dst;
size_t l, hlen;
int t, r;
l = strlen((const char *)src);
hlen = ((l + 2) / 3) * 4 + 1;
str = ckalloc(hlen);
dst = str;
r = 0;
while (l >= 3) {
t = (src[0] << 16) | (src[1] << 8) | src[2];
dst[0] = base64[(t >> 18) & 0x3f];
dst[1] = base64[(t >> 12) & 0x3f];
dst[2] = base64[(t >> 6) & 0x3f];
dst[3] = base64[(t >> 0) & 0x3f];
src += 3; l -= 3;
dst += 4; r += 4;
}
switch (l) {
case 2:
t = (src[0] << 16) | (src[1] << 8);
dst[0] = base64[(t >> 18) & 0x3f];
dst[1] = base64[(t >> 12) & 0x3f];
dst[2] = base64[(t >> 6) & 0x3f];
dst[3] = '=';
dst += 4;
r += 4;
break;
case 1:
t = src[0] << 16;
dst[0] = base64[(t >> 18) & 0x3f];
dst[1] = base64[(t >> 12) & 0x3f];
dst[2] = dst[3] = '=';
dst += 4;
r += 4;
break;
case 0:
break;
}
*dst = 0;
return (str);
}
void address_to_pubkeytxn(char *pkh, const char *addr)
{
char b58bin[25];
memset(b58bin, 0, 25);
b58tobin(b58bin, addr);
pkh[0] = 0x76;
pkh[1] = 0xa9;
pkh[2] = 0x14;
memcpy(&pkh[3], &b58bin[1], 20);
pkh[23] = 0x88;
pkh[24] = 0xac;
}
/* For encoding nHeight into coinbase, return how many bytes were used */
int ser_number(uchar *s, int32_t val)
{
int32_t *i32 = (int32_t *)&s[1];
int len;
if (val < 128)
len = 1;
else if (val < 16512)
len = 2;
else if (val < 2113664)
len = 3;
else
len = 4;
*i32 = htole32(val);
s[0] = len++;
return len;
}
int get_sernumber(uchar *s)
{
int32_t val = 0;
int len;
len = s[0];
if (unlikely(len < 1 || len > 4))
return 0;
memcpy(&val, &s[1], len);
return le32toh(val);
}
/* For testing a le encoded 256 byte hash against a target */
bool fulltest(const uchar *hash, const uchar *target)
{
uint32_t *hash32 = (uint32_t *)hash;
uint32_t *target32 = (uint32_t *)target;
bool ret = true;
int i;
for (i = 28 / 4; i >= 0; i--) {
uint32_t h32tmp = le32toh(hash32[i]);
uint32_t t32tmp = le32toh(target32[i]);
if (h32tmp > t32tmp) {
ret = false;
break;
}
if (h32tmp < t32tmp) {
ret = true;
break;
}
}
return ret;
}
void copy_tv(tv_t *dest, const tv_t *src)
{
memcpy(dest, src, sizeof(tv_t));
}
void ts_to_tv(tv_t *val, const ts_t *spec)
{
val->tv_sec = spec->tv_sec;
val->tv_usec = spec->tv_nsec / 1000;
}
void tv_to_ts(ts_t *spec, const tv_t *val)
{
spec->tv_sec = val->tv_sec;
spec->tv_nsec = val->tv_usec * 1000;
}
void us_to_tv(tv_t *val, int64_t us)
{
lldiv_t tvdiv = lldiv(us, 1000000);
val->tv_sec = tvdiv.quot;
val->tv_usec = tvdiv.rem;
}
void us_to_ts(ts_t *spec, int64_t us)
{
lldiv_t tvdiv = lldiv(us, 1000000);
spec->tv_sec = tvdiv.quot;
spec->tv_nsec = tvdiv.rem * 1000;
}
void ms_to_ts(ts_t *spec, int64_t ms)
{
lldiv_t tvdiv = lldiv(ms, 1000);
spec->tv_sec = tvdiv.quot;
spec->tv_nsec = tvdiv.rem * 1000000;
}
void ms_to_tv(tv_t *val, int64_t ms)
{
lldiv_t tvdiv = lldiv(ms, 1000);
val->tv_sec = tvdiv.quot;
val->tv_usec = tvdiv.rem * 1000;
}
void tv_time(tv_t *tv)
{
gettimeofday(tv, NULL);
}
void ts_realtime(ts_t *ts)
{
clock_gettime(CLOCK_REALTIME, ts);
}
void cksleep_prepare_r(ts_t *ts)
{
clock_gettime(CLOCK_MONOTONIC, ts);
}
void nanosleep_abstime(ts_t *ts_end)
{
clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, ts_end, NULL);
}
void timeraddspec(ts_t *a, const ts_t *b)
{
a->tv_sec += b->tv_sec;
a->tv_nsec += b->tv_nsec;
if (a->tv_nsec >= 1000000000) {
a->tv_nsec -= 1000000000;
a->tv_sec++;
}
}
/* Reentrant version of cksleep functions allow start time to be set separately
* from the beginning of the actual sleep, allowing scheduling delays to be
* counted in the sleep. */
void cksleep_ms_r(ts_t *ts_start, int ms)
{
ts_t ts_end;
ms_to_ts(&ts_end, ms);
timeraddspec(&ts_end, ts_start);
nanosleep_abstime(&ts_end);
}
void cksleep_us_r(ts_t *ts_start, int64_t us)
{
ts_t ts_end;
us_to_ts(&ts_end, us);
timeraddspec(&ts_end, ts_start);
nanosleep_abstime(&ts_end);
}
void cksleep_ms(int ms)
{
ts_t ts_start;
cksleep_prepare_r(&ts_start);
cksleep_ms_r(&ts_start, ms);
}
void cksleep_us(int64_t us)
{
ts_t ts_start;
cksleep_prepare_r(&ts_start);
cksleep_us_r(&ts_start, us);
}
/* Returns the microseconds difference between end and start times as a double */
double us_tvdiff(tv_t *end, tv_t *start)
{
/* Sanity check. We should only be using this for small differences so
* limit the max to 60 seconds. */
if (unlikely(end->tv_sec - start->tv_sec > 60))
return 60000000;
return (end->tv_sec - start->tv_sec) * 1000000 + (end->tv_usec - start->tv_usec);
}
/* Returns the milliseconds difference between end and start times */
int ms_tvdiff(tv_t *end, tv_t *start)
{
/* Like us_tdiff, limit to 1 hour. */
if (unlikely(end->tv_sec - start->tv_sec > 3600))
return 3600000;
return (end->tv_sec - start->tv_sec) * 1000 + (end->tv_usec - start->tv_usec) / 1000;
}
/* Returns the seconds difference between end and start times as a double */
double tvdiff(tv_t *end, tv_t *start)
{
return end->tv_sec - start->tv_sec + (end->tv_usec - start->tv_usec) / 1000000.0;
}
/* Create an exponentially decaying average over interval */
void decay_time(double *f, double fadd, double fsecs, double interval)
{
double ftotal, fprop, dexp;
if (fsecs <= 0)
return;
dexp = fsecs / interval;
/* Put Sanity bound on how large the denominator can get */
if (unlikely(dexp > 36))
dexp = 36;
fprop = 1.0 - 1 / exp(dexp);
ftotal = 1.0 + fprop;
*f += (fadd / fsecs * fprop);
*f /= ftotal;
/* Sanity check to prevent meaningless super small numbers that
* eventually underflow libjansson's real number interpretation. */
if (unlikely(*f < 2E-16))
*f = 0;
}
/* Convert a double value into a truncated string for displaying with its
* associated suitable for Mega, Giga etc. Buf array needs to be long enough */
void suffix_string(double val, char *buf, size_t bufsiz, int sigdigits)
{
const double kilo = 1000;
const double mega = 1000000;
const double giga = 1000000000;
const double tera = 1000000000000;
const double peta = 1000000000000000;
const double exa = 1000000000000000000;
char suffix[2] = "";
bool decimal = true;
double dval;
if (val >= exa) {
val /= peta;
dval = val / kilo;
strcpy(suffix, "E");
} else if (val >= peta) {
val /= tera;
dval = val / kilo;
strcpy(suffix, "P");
} else if (val >= tera) {
val /= giga;
dval = val / kilo;
strcpy(suffix, "T");
} else if (val >= giga) {
val /= mega;
dval = val / kilo;
strcpy(suffix, "G");
} else if (val >= mega) {
val /= kilo;
dval = val / kilo;
strcpy(suffix, "M");
} else if (val >= kilo) {
dval = val / kilo;
strcpy(suffix, "K");
} else {
dval = val;
decimal = false;
}
if (!sigdigits) {
if (decimal)
snprintf(buf, bufsiz, "%.3g%s", dval, suffix);
else
snprintf(buf, bufsiz, "%d%s", (unsigned int)dval, suffix);
} else {
/* Always show sigdigits + 1, padded on right with zeroes
* followed by suffix */
int ndigits = sigdigits - 1 - (dval > 0.0 ? floor(log10(dval)) : 0);
snprintf(buf, bufsiz, "%*.*f%s", sigdigits + 1, ndigits, dval, suffix);
}
}
/* truediffone == 0x00000000FFFF0000000000000000000000000000000000000000000000000000
* Generate a 256 bit binary LE target by cutting up diff into 64 bit sized
* portions or vice versa. */
static const double truediffone = 26959535291011309493156476344723991336010898738574164086137773096960.0;
static const double bits192 = 6277101735386680763835789423207666416102355444464034512896.0;
static const double bits128 = 340282366920938463463374607431768211456.0;
static const double bits64 = 18446744073709551616.0;
/* Converts a little endian 256 bit value to a double */
double le256todouble(const uchar *target)
{
uint64_t *data64;
double dcut64;
data64 = (uint64_t *)(target + 24);
dcut64 = le64toh(*data64) * bits192;
data64 = (uint64_t *)(target + 16);
dcut64 += le64toh(*data64) * bits128;
data64 = (uint64_t *)(target + 8);
dcut64 += le64toh(*data64) * bits64;
data64 = (uint64_t *)(target);
dcut64 += le64toh(*data64);
return dcut64;
}
/* Return a difficulty from a binary target */
double diff_from_target(uchar *target)
{
double d64, dcut64;
d64 = truediffone;
dcut64 = le256todouble(target);
if (unlikely(!dcut64))
dcut64 = 1;
return d64 / dcut64;
}
/* Return the network difficulty from the block header which is in packed form,
* as a double. */
double diff_from_nbits(char *nbits)
{
double numerator;
uint32_t diff32;
uint8_t pow;
int powdiff;
pow = nbits[0];
powdiff = (8 * (0x1d - 3)) - (8 * (pow - 3));
diff32 = be32toh(*((uint32_t *)nbits)) & 0x00FFFFFF;
numerator = 0xFFFFULL << powdiff;
return numerator / (double)diff32;
}
void target_from_diff(uchar *target, double diff)
{
uint64_t *data64, h64;
double d64, dcut64;
if (unlikely(diff == 0.0)) {
/* This shouldn't happen but best we check to prevent a crash */
memset(target, 0xff, 32);
return;
}
d64 = truediffone;
d64 /= diff;
dcut64 = d64 / bits192;
h64 = dcut64;
data64 = (uint64_t *)(target + 24);
*data64 = htole64(h64);
dcut64 = h64;
dcut64 *= bits192;
d64 -= dcut64;
dcut64 = d64 / bits128;
h64 = dcut64;
data64 = (uint64_t *)(target + 16);
*data64 = htole64(h64);
dcut64 = h64;
dcut64 *= bits128;
d64 -= dcut64;
dcut64 = d64 / bits64;
h64 = dcut64;
data64 = (uint64_t *)(target + 8);
*data64 = htole64(h64);
dcut64 = h64;
dcut64 *= bits64;
d64 -= dcut64;
h64 = d64;
data64 = (uint64_t *)(target);
*data64 = htole64(h64);
}
void gen_hash(uchar *data, uchar *hash, int len)
{
uchar hash1[32];
sha256(data, len, hash1);
sha256(hash1, 32, hash);
}