You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1525 lines
36 KiB

/*
* Copyright 2014 Con Kolivas
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include <sys/types.h>
#include <sys/socket.h>
#ifdef HAVE_LINUX_UN_H
#include <linux/un.h>
#else
#include <sys/un.h>
#endif
#include <sys/prctl.h>
#include <sys/stat.h>
#include <netdb.h>
#include <unistd.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>
#include <math.h>
#include "ckpool.h"
#include "libckpool.h"
#include "sha2.h"
#ifndef UNIX_PATH_MAX
#define UNIX_PATH_MAX 108
#endif
void rename_proc(const char *name)
{
char buf[16];
snprintf(buf, 15, "ckp@%s", name);
buf[15] = '\0';
prctl(PR_SET_NAME, buf, 0, 0, 0);
}
void create_pthread(pthread_t *thread, void *(*start_routine)(void *), void *arg)
{
int ret = pthread_create(thread, NULL, start_routine, arg);
if (unlikely(ret))
quit(1, "Failed to pthread_create");
}
void join_pthread(pthread_t thread)
{
pthread_join(thread, NULL);
}
/* Place holders for when we add lock debugging */
#define GETLOCK(_lock, _file, _func, _line)
#define GOTLOCK(_lock, _file, _func, _line)
#define TRYLOCK(_lock, _file, _func, _line)
#define DIDLOCK(_ret, _lock, _file, _func, _line)
#define GUNLOCK(_lock, _file, _func, _line)
#define INITLOCK(_typ, _lock, _file, _func, _line)
void _mutex_lock(pthread_mutex_t *lock, const char *file, const char *func, const int line)
{
GETLOCK(lock, file, func, line);
if (unlikely(pthread_mutex_lock(lock)))
quitfrom(1, file, func, line, "WTF MUTEX ERROR ON LOCK!");
GOTLOCK(lock, file, func, line);
}
void _mutex_unlock(pthread_mutex_t *lock, const char *file, const char *func, const int line)
{
if (unlikely(pthread_mutex_unlock(lock)))
quitfrom(1, file, func, line, "WTF MUTEX ERROR ON UNLOCK!");
GUNLOCK(lock, file, func, line);
}
int _mutex_trylock(pthread_mutex_t *lock, __maybe_unused const char *file, __maybe_unused const char *func, __maybe_unused const int line)
{
TRYLOCK(lock, file, func, line);
int ret = pthread_mutex_trylock(lock);
DIDLOCK(ret, lock, file, func, line);
return ret;
}
void _wr_lock(pthread_rwlock_t *lock, const char *file, const char *func, const int line)
{
GETLOCK(lock, file, func, line);
if (unlikely(pthread_rwlock_wrlock(lock)))
quitfrom(1, file, func, line, "WTF WRLOCK ERROR ON LOCK!");
GOTLOCK(lock, file, func, line);
}
int _wr_trylock(pthread_rwlock_t *lock, __maybe_unused const char *file, __maybe_unused const char *func, __maybe_unused const int line)
{
TRYLOCK(lock, file, func, line);
int ret = pthread_rwlock_trywrlock(lock);
DIDLOCK(ret, lock, file, func, line);
return ret;
}
void _rd_lock(pthread_rwlock_t *lock, const char *file, const char *func, const int line)
{
GETLOCK(lock, file, func, line);
if (unlikely(pthread_rwlock_rdlock(lock)))
quitfrom(1, file, func, line, "WTF RDLOCK ERROR ON LOCK!");
GOTLOCK(lock, file, func, line);
}
void _rw_unlock(pthread_rwlock_t *lock, const char *file, const char *func, const int line)
{
if (unlikely(pthread_rwlock_unlock(lock)))
quitfrom(1, file, func, line, "WTF RWLOCK ERROR ON UNLOCK!");
GUNLOCK(lock, file, func, line);
}
void _rd_unlock(pthread_rwlock_t *lock, const char *file, const char *func, const int line)
{
_rw_unlock(lock, file, func, line);
}
void _wr_unlock(pthread_rwlock_t *lock, const char *file, const char *func, const int line)
{
_rw_unlock(lock, file, func, line);
}
void _mutex_init(pthread_mutex_t *lock, const char *file, const char *func, const int line)
{
if (unlikely(pthread_mutex_init(lock, NULL)))
quitfrom(1, file, func, line, "Failed to pthread_mutex_init");
INITLOCK(lock, CGLOCK_MUTEX, file, func, line);
}
void mutex_destroy(pthread_mutex_t *lock)
{
/* Ignore return code. This only invalidates the mutex on linux but
* releases resources on windows. */
pthread_mutex_destroy(lock);
}
void _rwlock_init(pthread_rwlock_t *lock, const char *file, const char *func, const int line)
{
if (unlikely(pthread_rwlock_init(lock, NULL)))
quitfrom(1, file, func, line, "Failed to pthread_rwlock_init");
INITLOCK(lock, CGLOCK_RW, file, func, line);
}
void rwlock_destroy(pthread_rwlock_t *lock)
{
pthread_rwlock_destroy(lock);
}
void _cond_init(pthread_cond_t *cond, const char *file, const char *func, const int line)
{
if (unlikely(pthread_cond_init(cond, NULL)))
quitfrom(1, file, func, line, "Failed to pthread_cond_init!");
}
void _cklock_init(cklock_t *lock, const char *file, const char *func, const int line)
{
_mutex_init(&lock->mutex, file, func, line);
_rwlock_init(&lock->rwlock, file, func, line);
}
void cklock_destroy(cklock_t *lock)
{
rwlock_destroy(&lock->rwlock);
mutex_destroy(&lock->mutex);
}
/* Read lock variant of cklock. Cannot be promoted. */
void _ck_rlock(cklock_t *lock, const char *file, const char *func, const int line)
{
_mutex_lock(&lock->mutex, file, func, line);
_rd_lock(&lock->rwlock, file, func, line);
_mutex_unlock(&lock->mutex, file, func, line);
}
/* Intermediate variant of cklock - behaves as a read lock but can be promoted
* to a write lock or demoted to read lock. */
void _ck_ilock(cklock_t *lock, const char *file, const char *func, const int line)
{
_mutex_lock(&lock->mutex, file, func, line);
}
/* Unlock intermediate variant without changing to read or write version */
void _ck_uilock(cklock_t *lock, const char *file, const char *func, const int line)
{
_mutex_unlock(&lock->mutex, file, func, line);
}
/* Upgrade intermediate variant to a write lock */
void _ck_ulock(cklock_t *lock, const char *file, const char *func, const int line)
{
_wr_lock(&lock->rwlock, file, func, line);
}
/* Write lock variant of cklock */
void _ck_wlock(cklock_t *lock, const char *file, const char *func, const int line)
{
_mutex_lock(&lock->mutex, file, func, line);
_wr_lock(&lock->rwlock, file, func, line);
}
/* Downgrade write variant to a read lock */
void _ck_dwlock(cklock_t *lock, const char *file, const char *func, const int line)
{
_wr_unlock(&lock->rwlock, file, func, line);
_rd_lock(&lock->rwlock, file, func, line);
_mutex_unlock(&lock->mutex, file, func, line);
}
/* Demote a write variant to an intermediate variant */
void _ck_dwilock(cklock_t *lock, const char *file, const char *func, const int line)
{
_wr_unlock(&lock->rwlock, file, func, line);
}
/* Downgrade intermediate variant to a read lock */
void _ck_dlock(cklock_t *lock, const char *file, const char *func, const int line)
{
_rd_lock(&lock->rwlock, file, func, line);
_mutex_unlock(&lock->mutex, file, func, line);
}
void _ck_runlock(cklock_t *lock, const char *file, const char *func, const int line)
{
_rd_unlock(&lock->rwlock, file, func, line);
}
void _ck_wunlock(cklock_t *lock, const char *file, const char *func, const int line)
{
_wr_unlock(&lock->rwlock, file, func, line);
_mutex_unlock(&lock->mutex, file, func, line);
}
bool extract_sockaddr(char *url, char **sockaddr_url, char **sockaddr_port)
{
char *url_begin, *url_end, *ipv6_begin, *ipv6_end, *port_start = NULL;
int url_len, port_len = 0;
char *url_address, *port;
size_t hlen;
if (!url) {
LOGWARNING("Null length url string passed to extract_sockaddr");
return false;
}
*sockaddr_url = url;
url_begin = strstr(url, "//");
if (!url_begin)
url_begin = url;
else
url_begin += 2;
/* Look for numeric ipv6 entries */
ipv6_begin = strstr(url_begin, "[");
ipv6_end = strstr(url_begin, "]");
if (ipv6_begin && ipv6_end && ipv6_end > ipv6_begin)
url_end = strstr(ipv6_end, ":");
else
url_end = strstr(url_begin, ":");
if (url_end) {
url_len = url_end - url_begin;
port_len = strlen(url_begin) - url_len - 1;
if (port_len < 1)
return false;
port_start = url_end + 1;
} else
url_len = strlen(url_begin);
if (url_len < 1) {
LOGWARNING("Null length URL passed to extract_sockaddr");
return false;
}
hlen = url_len + 1;
url_address = ckalloc(hlen);
sprintf(url_address, "%.*s", url_len, url_begin);
port = ckalloc(8);
if (port_len) {
char *slash;
snprintf(port, 6, "%.*s", port_len, port_start);
slash = strchr(port, '/');
if (slash)
*slash = '\0';
} else
strcpy(port, "80");
*sockaddr_port = port;
*sockaddr_url = url_address;
return true;
}
void keep_sockalive(int fd)
{
const int tcp_one = 1;
const int tcp_keepidle = 45;
const int tcp_keepintvl = 30;
setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, (const void *)&tcp_one, sizeof(tcp_one));
setsockopt(fd, SOL_TCP, TCP_NODELAY, (const void *)&tcp_one, sizeof(tcp_one));
setsockopt(fd, SOL_TCP, TCP_KEEPCNT, &tcp_one, sizeof(tcp_one));
setsockopt(fd, SOL_TCP, TCP_KEEPIDLE, &tcp_keepidle, sizeof(tcp_keepidle));
setsockopt(fd, SOL_TCP, TCP_KEEPINTVL, &tcp_keepintvl, sizeof(tcp_keepintvl));
}
void noblock_socket(int fd)
{
int flags = fcntl(fd, F_GETFL, 0);
fcntl(fd, F_SETFL, O_NONBLOCK | flags);
}
void block_socket(int fd)
{
int flags = fcntl(fd, F_GETFL, 0);
fcntl(fd, F_SETFL, flags & ~O_NONBLOCK);
}
int bind_socket(char *url, char *port)
{
struct addrinfo servinfobase, *servinfo, hints, *p;
int ret, sockd = -1;
const int on = 1;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
servinfo = &servinfobase;
if (getaddrinfo(url, port, &hints, &servinfo) != 0) {
LOGWARNING("Failed to resolve (?wrong URL) %s:%s", url, port);
goto out;
}
for (p = servinfo; p != NULL; p = p->ai_next) {
sockd = socket(p->ai_family, p->ai_socktype, p->ai_protocol);
if (sockd > 0)
break;
}
if (sockd < 0) {
LOGWARNING("Failed to open socket for %s:%s", url, port);
goto out;
}
setsockopt(sockd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
ret = bind(sockd, p->ai_addr, p->ai_addrlen);
if (ret < 0) {
LOGWARNING("Failed to bind socket for %s:%s", url, port);
close(sockd);
sockd = -1;
goto out;
}
out:
return sockd;
}
int connect_socket(char *url, char *port)
{
struct addrinfo servinfobase, *servinfo, hints, *p;
int sockd = -1;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
servinfo = &servinfobase;
if (getaddrinfo(url, port, &hints, &servinfo) != 0) {
LOGWARNING("Failed to resolve (?wrong URL) %s:%s", url, port);
goto out;
}
for (p = servinfo; p != NULL; p = p->ai_next) {
sockd = socket(p->ai_family, p->ai_socktype, p->ai_protocol);
if (sockd == -1) {
LOGDEBUG("Failed socket");
continue;
}
/* Iterate non blocking over entries returned by getaddrinfo
* to cope with round robin DNS entries, finding the first one
* we can connect to quickly. */
noblock_socket(sockd);
if (connect(sockd, p->ai_addr, p->ai_addrlen) == -1) {
struct timeval tv_timeout = {1, 0};
int selret;
fd_set rw;
if (!sock_connecting()) {
close(sockd);
LOGDEBUG("Failed sock connect");
continue;
}
retry:
FD_ZERO(&rw);
FD_SET(sockd, &rw);
selret = select(sockd + 1, NULL, &rw, NULL, &tv_timeout);
if (selret > 0 && FD_ISSET(sockd, &rw)) {
socklen_t len;
int err, n;
len = sizeof(err);
n = getsockopt(sockd, SOL_SOCKET, SO_ERROR, (void *)&err, &len);
if (!n && !err) {
LOGDEBUG("Succeeded delayed connect");
block_socket(sockd);
break;
}
}
if (selret < 0 && interrupted())
goto retry;
close(sockd);
sockd = -1;
LOGDEBUG("Select timeout/failed connect");
continue;
}
LOGDEBUG("Succeeded immediate connect");
if (sockd >= 0)
block_socket(sockd);
break;
}
if (p == NULL) {
LOGNOTICE("Failed to connect to %s:%s", url, port);
sockd = -1;
}
freeaddrinfo(servinfo);
out:
return sockd;
}
int write_socket(int fd, const void *buf, size_t nbyte)
{
tv_t tv_timeout = {1, 0};
fd_set writefds;
int ret;
retry:
FD_ZERO(&writefds);
FD_SET(fd, &writefds);
ret = select(fd + 1, NULL, &writefds, NULL, &tv_timeout);
if (ret < 0 && interrupted())
goto retry;
if (ret < 1) {
if (!ret)
LOGNOTICE("Select timed out in write_socket");
else
LOGERR("Select failed in write_socket");
goto out;
}
ret = write(fd, buf, nbyte);
if (ret < 0)
LOGWARNING("Failed to write in write_socket");
out:
return ret;
}
/* Peek in a socket, and then receive only one line at a time, allocing enough
* memory in *buf */
int read_socket_line(connsock_t *cs)
{
char readbuf[PAGESIZE], *eom = NULL;
size_t buflen = 0, bufofs = 0;
tv_t timeout = {5, 0};
int ret, bufsiz;
fd_set rd;
dealloc(cs->buf);
bufsiz = PAGESIZE;
readbuf[bufsiz - 1] = '\0';
while (!eom) {
int extralen;
FD_ZERO(&rd);
FD_SET(cs->fd, &rd);
timeout.tv_sec = 5;
timeout.tv_usec = 0;
ret = select(cs->fd + 1, &rd, NULL, NULL, &timeout);
if (ret < 0 && interrupted())
continue;
if (ret < 1) {
if (!ret)
LOGNOTICE("Select timed out in read_socket_line");
else
LOGERR("Select failed in read_socket_line");
goto out;
}
ret = recv(cs->fd, readbuf, bufsiz - 2, MSG_PEEK);
if (ret < 0) {
LOGERR("Failed to recv in read_socket_line");
goto out;
}
if (!ret)
continue;
eom = strchr(readbuf, '\n');
if (eom)
extralen = eom - readbuf + 1;
else
extralen = ret;
buflen += extralen + 1;
align_len(&buflen);
cs->buf = realloc(cs->buf, buflen);
if (unlikely(!cs->buf))
quit(1, "Failed to alloc buf of %d bytes in read_socket_line", (int)buflen);
ret = recv(cs->fd, cs->buf + bufofs, extralen, 0);
if (ret < 0) {
LOGERR("Failed to recv %d bytes in read_socket_line", (int)buflen);
goto out;
}
bufofs += ret;
}
eom = cs->buf + bufofs;
eom[0] = '\0';
ret = bufofs + 1;
out:
if (ret < 1)
dealloc(cs->buf);
return ret;
}
void empty_socket(int fd)
{
int ret;
do {
char buf[PAGESIZE];
tv_t timeout = {0, 0};
fd_set rd;
FD_ZERO(&rd);
FD_SET(fd, &rd);
ret = select(fd + 1, &rd, NULL, NULL, &timeout);
if (ret < 0 && interrupted())
continue;
if (ret > 0) {
ret = recv(fd, buf, PAGESIZE - 1, 0);
buf[ret] = 0;
LOGDEBUG("Discarding: %s", buf);
}
} while (ret > 0);
}
void close_unix_socket(const int sockd, const char *server_path)
{
int ret;
ret = close(sockd);
if (unlikely(ret < 0))
LOGERR("Failed to close sock %d %s", sockd, server_path);
ret = unlink(server_path);
if (unlikely(ret < 0))
LOGERR("Failed to unlink %s", server_path);
}
int open_unix_server(const char *server_path)
{
struct sockaddr_un serveraddr;
int sockd = -1, len, ret;
struct stat buf;
if (likely(server_path)) {
len = strlen(server_path);
if (unlikely(len < 1 || len > UNIX_PATH_MAX)) {
LOGERR("Invalid server path length %d in open_unix_server", len);
goto out;
}
} else {
LOGERR("Null passed as server_path to open_unix_server");
goto out;
}
if (!stat(server_path, &buf)) {
if ((buf.st_mode & S_IFMT) == S_IFSOCK) {
ret = unlink(server_path);
if (ret) {
LOGERR("Unlink of %s failed in open_unix_server", server_path);
goto out;
}
LOGDEBUG("Unlinked %s to recreate socket", server_path);
} else {
LOGWARNING("%s already exists and is not a socket, not removing",
server_path);
goto out;
}
}
sockd = socket(AF_UNIX, SOCK_STREAM, 0);
if (unlikely(sockd < 0)) {
LOGERR("Failed to open socket in open_unix_server");
goto out;
}
memset(&serveraddr, 0, sizeof(serveraddr));
serveraddr.sun_family = AF_UNIX;
strcpy(serveraddr.sun_path, server_path);
ret = bind(sockd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));
if (unlikely(ret < 0)) {
LOGERR("Failed to bind to socket in open_unix_server");
close_unix_socket(sockd, server_path);
sockd = -1;
goto out;
}
ret = listen(sockd, 1);
if (unlikely(ret < 0)) {
LOGERR("Failed to listen to socket in open_unix_server");
close_unix_socket(sockd, server_path);
sockd = -1;
goto out;
}
LOGDEBUG("Opened server path %s successfully on socket %d", server_path, sockd);
out:
return sockd;
}
int open_unix_client(const char *server_path)
{
struct sockaddr_un serveraddr;
int sockd = -1, len, ret;
if (likely(server_path)) {
len = strlen(server_path);
if (unlikely(len < 1 || len > UNIX_PATH_MAX)) {
LOGERR("Invalid server path length %d in open_unix_client", len);
goto out;
}
} else {
LOGERR("Null passed as server_path to open_unix_client");
goto out;
}
sockd = socket(AF_UNIX, SOCK_STREAM, 0);
if (unlikely(sockd < 0)) {
LOGERR("Failed to open socket in open_unix_client");
goto out;
}
memset(&serveraddr, 0, sizeof(serveraddr));
serveraddr.sun_family = AF_UNIX;
strcpy(serveraddr.sun_path, server_path);
ret = connect(sockd, (struct sockaddr *)&serveraddr, sizeof(serveraddr));
if (unlikely(ret < 0)) {
LOGERR("Failed to bind to socket in open_unix_client");
close(sockd);
sockd = -1;
goto out;
}
out:
return sockd;
}
/* Use a standard message across the unix sockets:
* 4 byte length of message as little endian encoded uint32_t followed by the
* string. Return NULL in case of failure. */
char *recv_unix_msg(int sockd)
{
tv_t tv_timeout = {60, 0};
char *buf = NULL;
uint32_t msglen;
fd_set readfs;
int ret, ofs;
FD_ZERO(&readfs);
FD_SET(sockd, &readfs);
ret = select(sockd + 1, &readfs, NULL, NULL, &tv_timeout);
if (ret < 1) {
LOGERR("Select1 failed in recv_unix_msg");
goto out;
}
/* Get message length */
ret = read(sockd, &msglen, 4);
if (ret < 4) {
LOGERR("Failed to read 4 byte length in recv_unix_msg");
goto out;
}
msglen = le32toh(msglen);
if (unlikely(msglen < 1)) {
LOGWARNING("Invalid message length zero sent to recv_unix_msg");
goto out;
}
buf = ckalloc(msglen + 1);
buf[msglen] = 0;
ofs = 0;
while (msglen) {
tv_timeout.tv_sec = 60;
tv_timeout.tv_usec = 0;
FD_ZERO(&readfs);
FD_SET(sockd, &readfs);
ret = select(sockd + 1, &readfs, NULL, NULL, &tv_timeout);
if (ret < 1) {
LOGERR("Select2 failed in recv_unix_msg");
dealloc(buf);
goto out;
}
ret = read(sockd, buf + ofs, msglen);
if (unlikely(ret < 0)) {
LOGERR("Failed to read %d bytes in recv_unix_msg", msglen);
dealloc(buf);
goto out;
}
ofs += ret;
msglen -= ret;
}
out:
return buf;
}
bool send_unix_msg(int sockd, const char *buf)
{
tv_t tv_timeout = {1, 0};
uint32_t msglen, len;
fd_set writefds;
int ret, ofs;
len = strlen(buf);
if (unlikely(!len)) {
LOGWARNING("Zero length message sent to send_unix_msg");
return false;
}
msglen = htole32(len);
FD_ZERO(&writefds);
FD_SET(sockd, &writefds);
ret = select(sockd + 1, NULL, &writefds, NULL, &tv_timeout);
if (ret < 1) {
LOGERR("Select1 failed in send_unix_msg");
return false;
}
ret = write(sockd, &msglen, 4);
if (unlikely(ret < 4)) {
LOGERR("Failed to write 4 byte length in send_unix_msg");
return false;
}
ofs = 0;
while (len) {
tv_timeout.tv_sec = 1;
tv_timeout.tv_usec = 0;
FD_ZERO(&writefds);
FD_SET(sockd, &writefds);
ret = select(sockd + 1, NULL, &writefds, NULL, &tv_timeout);
if (ret < 1) {
LOGERR("Select2 failed in send_unix_msg");
return false;
}
ret = write(sockd, buf + ofs, len);
if (unlikely(ret < 0)) {
LOGERR("Failed to write %d bytes in send_unix_msg", len);
return false;
}
ofs += ret;
len -= ret;
}
return true;
}
/* Send a single message to a process instance when there will be no response,
* closing the socket immediately. */
bool send_proc(proc_instance_t *pi, const char *msg)
{
char *path = pi->us.path;
bool ret = false;
int sockd;
if (unlikely(!path || !strlen(path))) {
LOGERR("Attempted to send message %s to null path in send_proc", msg ? msg : "");
goto out;
}
if (unlikely(!msg || !strlen(msg))) {
LOGERR("Attempted to send null message to socket %s in send_proc", path);
goto out;
}
sockd = open_unix_client(path);
if (unlikely(sockd < 0)) {
LOGWARNING("Failed to open socket %s", path);
goto out;
}
if (unlikely(!send_unix_msg(sockd, msg)))
LOGWARNING("Failed to send %s to socket %s", msg, path);
else
ret = true;
close(sockd);
out:
return ret;
}
/* Send a single message to a process instance and retrieve the response, then
* close the socket. */
char *send_recv_proc(proc_instance_t *pi, const char *msg)
{
char *path = pi->us.path, *buf = NULL;
int sockd;
if (unlikely(!path || !strlen(path))) {
LOGERR("Attempted to send message %s to null path in send_proc", msg ? msg : "");
goto out;
}
if (unlikely(!msg || !strlen(msg))) {
LOGERR("Attempted to send null message to socket %s in send_proc", path);
goto out;
}
sockd = open_unix_client(path);
if (unlikely(sockd < 0)) {
LOGWARNING("Failed to open socket %s", path);
goto out;
}
if (unlikely(!send_unix_msg(sockd, msg)))
LOGWARNING("Failed to send %s to socket %s", msg, path);
else
buf = recv_unix_msg(sockd);
close(sockd);
out:
return buf;
}
json_t *json_rpc_call(connsock_t *cs, const char *rpc_req)
{
char *http_req = NULL;
json_error_t err_val;
json_t *val = NULL;
int len, ret;
if (unlikely(cs->fd < 0)) {
LOGWARNING("FD %d invalid in json_rpc_call", cs->fd);
goto out;
}
if (unlikely(!cs->url)) {
LOGWARNING("No URL in json_rpc_call");
goto out;
}
if (unlikely(!cs->port)) {
LOGWARNING("No port in json_rpc_call");
goto out;
}
if (unlikely(!cs->auth)) {
LOGWARNING("No auth in json_rpc_call");
goto out;
}
if (unlikely(!rpc_req)) {
LOGWARNING("Null rpc_req passed to json_rpc_call");
goto out;
}
len = strlen(rpc_req);
if (unlikely(!len)) {
LOGWARNING("Zero length rpc_req passed to json_rpc_call");
goto out;
}
http_req = ckalloc(len + 256); // Leave room for headers
sprintf(http_req,
"POST / HTTP/1.1\n"
"Authorization: Basic %s\n"
"Host: %s:%s\n"
"Content-type: application/json\n"
"Content-Length: %d\n\n%s",
cs->auth, cs->url, cs->port, len, rpc_req);
len = strlen(http_req);
ret = write_socket(cs->fd, http_req, len);
if (ret != len) {
LOGWARNING("Failed to write to socket in json_rpc_call");
goto out_empty;
}
ret = read_socket_line(cs);
if (ret < 1) {
LOGWARNING("Failed to read socket line in json_rpc_call");
goto out_empty;
}
if (strncasecmp(cs->buf, "HTTP/1.1 200 OK", 15)) {
LOGWARNING("HTTP response not ok: %s", cs->buf);
goto out_empty;
}
do {
ret = read_socket_line(cs);
if (ret < 1) {
LOGWARNING("Failed to read http socket lines in json_rpc_call");
goto out_empty;
}
} while (strncmp(cs->buf, "{", 1));
val = json_loads(cs->buf, 0, &err_val);
if (!val)
LOGWARNING("JSON decode failed(%d): %s", err_val.line, err_val.text);
out_empty:
empty_socket(cs->fd);
if (!val) {
/* Assume that a failed request means the socket will be closed
* and reopen it */
LOGWARNING("Reopening socket to %s:%s", cs->url, cs->port);
close(cs->fd);
cs->fd = connect_socket(cs->url, cs->port);
}
out:
free(http_req);
dealloc(cs->buf);
return val;
}
/* Align a size_t to 4 byte boundaries for fussy arches */
void align_len(size_t *len)
{
if (*len % 4)
*len += 4 - (*len % 4);
}
void realloc_strcat(char **ptr, const char *s)
{
size_t old, new, len;
char *ofs;
if (unlikely(!*s)) {
LOGWARNING("Passed empty pointer to realloc_strcat");
return;
}
new = strlen(s);
if (unlikely(!new)) {
LOGWARNING("Passed empty string to realloc_strcat");
return;
}
if (!*ptr)
old = 0;
else
old = strlen(*ptr);
len = old + new + 1;
align_len(&len);
*ptr = realloc(*ptr, len);
if (!*ptr)
quit(1, "Failed to realloc ptr of size %d in realloc_strcat", (int)len);
ofs = *ptr + old;
sprintf(ofs, "%s", s);
}
void *_ckalloc(size_t len, const char *file, const char *func, const int line)
{
void *ptr;
align_len(&len);
ptr = malloc(len);
if (unlikely(!ptr))
quitfrom(1, file, func, line, "Failed to ckalloc!");
return ptr;
}
void *_ckzalloc(size_t len, const char *file, const char *func, const int line)
{
void *ptr;
align_len(&len);
ptr = calloc(len, 1);
if (unlikely(!ptr))
quitfrom(1, file, func, line, "Failed to ckalloc!");
return ptr;
}
void _dealloc(void **ptr)
{
free(*ptr);
*ptr = NULL;
}
/* Adequate size s==len*2 + 1 must be alloced to use this variant */
void __bin2hex(void *vs, const void *vp, size_t len)
{
static const char hex[16] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};
const uchar *p = vp;
uchar *s = vs;
int i;
for (i = 0; i < (int)len; i++) {
*s++ = hex[p[i] >> 4];
*s++ = hex[p[i] & 0xF];
}
*s++ = '\0';
}
/* Returns a malloced array string of a binary value of arbitrary length. The
* array is rounded up to a 4 byte size to appease architectures that need
* aligned array sizes */
void *bin2hex(const void *vp, size_t len)
{
const uchar *p = vp;
size_t slen;
uchar *s;
slen = len * 2 + 1;
s = ckzalloc(slen);
__bin2hex(s, p, len);
return s;
}
static const int hex2bin_tbl[256] = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1,
-1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
};
/* Does the reverse of bin2hex but does not allocate any ram */
bool hex2bin(void *vp, const void *vhexstr, size_t len)
{
const uchar *hexstr = vhexstr;
int nibble1, nibble2;
bool ret = false;
uchar *p = vp;
uchar idx;
while (*hexstr && len) {
if (unlikely(!hexstr[1])) {
LOGWARNING("Early end of string in hex2bin");
return ret;
}
idx = *hexstr++;
nibble1 = hex2bin_tbl[idx];
idx = *hexstr++;
nibble2 = hex2bin_tbl[idx];
if (unlikely((nibble1 < 0) || (nibble2 < 0))) {
LOGWARNING("Invalid binary encoding in hex2bin");
return ret;
}
*p++ = (((uchar)nibble1) << 4) | ((uchar)nibble2);
--len;
}
if (likely(len == 0 && *hexstr == 0))
ret = true;
if (!ret)
LOGWARNING("Failed hex2bin decode");
return ret;
}
static const int b58tobin_tbl[] = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, -1, -1, -1,
-1, 9, 10, 11, 12, 13, 14, 15, 16, -1, 17, 18, 19, 20, 21, -1,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, -1, -1, -1, -1, -1,
-1, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, -1, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57
};
/* b58bin should always be at least 25 bytes long and already checked to be
* valid. */
void b58tobin(char *b58bin, const char *b58)
{
uint32_t c, bin32[7];
int len, i, j;
uint64_t t;
memset(bin32, 0, 7 * sizeof(uint32_t));
len = strlen((const char *)b58);
for (i = 0; i < len; i++) {
c = b58[i];
c = b58tobin_tbl[c];
for (j = 6; j >= 0; j--) {
t = ((uint64_t)bin32[j]) * 58 + c;
c = (t & 0x3f00000000ull) >> 32;
bin32[j] = t & 0xffffffffull;
}
}
*(b58bin++) = bin32[0] & 0xff;
for (i = 1; i < 7; i++) {
*((uint32_t *)b58bin) = htobe32(bin32[i]);
b58bin += sizeof(uint32_t);
}
}
static const char base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
/* Return a malloced string of *src encoded into mime base 64 */
char *http_base64(const char *src)
{
char *str, *dst;
size_t l, hlen;
int t, r;
l = strlen((const char *)src);
hlen = ((l + 2) / 3) * 4 + 1;
str = ckalloc(hlen);
dst = str;
r = 0;
while (l >= 3) {
t = (src[0] << 16) | (src[1] << 8) | src[2];
dst[0] = base64[(t >> 18) & 0x3f];
dst[1] = base64[(t >> 12) & 0x3f];
dst[2] = base64[(t >> 6) & 0x3f];
dst[3] = base64[(t >> 0) & 0x3f];
src += 3; l -= 3;
dst += 4; r += 4;
}
switch (l) {
case 2:
t = (src[0] << 16) | (src[1] << 8);
dst[0] = base64[(t >> 18) & 0x3f];
dst[1] = base64[(t >> 12) & 0x3f];
dst[2] = base64[(t >> 6) & 0x3f];
dst[3] = '=';
dst += 4;
r += 4;
break;
case 1:
t = src[0] << 16;
dst[0] = base64[(t >> 18) & 0x3f];
dst[1] = base64[(t >> 12) & 0x3f];
dst[2] = dst[3] = '=';
dst += 4;
r += 4;
break;
case 0:
break;
}
*dst = 0;
return (str);
}
void address_to_pubkeytxn(char *pkh, const char *addr)
{
char b58bin[25];
memset(b58bin, 0, 25);
b58tobin(b58bin, addr);
pkh[0] = 0x76;
pkh[1] = 0xa9;
pkh[2] = 0x14;
memcpy(&pkh[3], &b58bin[1], 20);
pkh[23] = 0x88;
pkh[24] = 0xac;
}
/* For encoding nHeight into coinbase, return how many bytes were used */
int ser_number(uchar *s, int32_t val)
{
int32_t *i32 = (int32_t *)&s[1];
int len;
if (val < 128)
len = 1;
else if (val < 16512)
len = 2;
else if (val < 2113664)
len = 3;
else
len = 4;
*i32 = htole32(val);
s[0] = len++;
return len;
}
/* For testing a le encoded 256 byte hash against a target */
bool fulltest(const uchar *hash, const uchar *target)
{
uint32_t *hash32 = (uint32_t *)hash;
uint32_t *target32 = (uint32_t *)target;
bool ret = true;
int i;
for (i = 28 / 4; i >= 0; i--) {
uint32_t h32tmp = le32toh(hash32[i]);
uint32_t t32tmp = le32toh(target32[i]);
if (h32tmp > t32tmp) {
ret = false;
break;
}
if (h32tmp < t32tmp) {
ret = true;
break;
}
}
return ret;
}
void copy_tv(tv_t *dest, const tv_t *src)
{
memcpy(dest, src, sizeof(tv_t));
}
void ts_to_tv(tv_t *val, const ts_t *spec)
{
val->tv_sec = spec->tv_sec;
val->tv_usec = spec->tv_nsec / 1000;
}
void tv_to_ts(ts_t *spec, const tv_t *val)
{
spec->tv_sec = val->tv_sec;
spec->tv_nsec = val->tv_usec * 1000;
}
void us_to_tv(tv_t *val, int64_t us)
{
lldiv_t tvdiv = lldiv(us, 1000000);
val->tv_sec = tvdiv.quot;
val->tv_usec = tvdiv.rem;
}
void us_to_ts(ts_t *spec, int64_t us)
{
lldiv_t tvdiv = lldiv(us, 1000000);
spec->tv_sec = tvdiv.quot;
spec->tv_nsec = tvdiv.rem * 1000;
}
void ms_to_ts(ts_t *spec, int64_t ms)
{
lldiv_t tvdiv = lldiv(ms, 1000);
spec->tv_sec = tvdiv.quot;
spec->tv_nsec = tvdiv.rem * 1000000;
}
void ms_to_tv(tv_t *val, int64_t ms)
{
lldiv_t tvdiv = lldiv(ms, 1000);
val->tv_sec = tvdiv.quot;
val->tv_usec = tvdiv.rem * 1000;
}
void tv_time(tv_t *tv)
{
gettimeofday(tv, NULL);
}
void ts_realtime(ts_t *ts)
{
clock_gettime(CLOCK_REALTIME, ts);
}
void cksleep_prepare_r(ts_t *ts)
{
clock_gettime(CLOCK_MONOTONIC, ts);
}
void nanosleep_abstime(ts_t *ts_end)
{
int ret;
do {
ret = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, ts_end, NULL);
} while (ret == EINTR);
}
void timeraddspec(ts_t *a, const ts_t *b)
{
a->tv_sec += b->tv_sec;
a->tv_nsec += b->tv_nsec;
if (a->tv_nsec >= 1000000000) {
a->tv_nsec -= 1000000000;
a->tv_sec++;
}
}
/* Reentrant version of cksleep functions allow start time to be set separately
* from the beginning of the actual sleep, allowing scheduling delays to be
* counted in the sleep. */
void cksleep_ms_r(ts_t *ts_start, int ms)
{
ts_t ts_end;
ms_to_ts(&ts_end, ms);
timeraddspec(&ts_end, ts_start);
nanosleep_abstime(&ts_end);
}
void cksleep_us_r(ts_t *ts_start, int64_t us)
{
ts_t ts_end;
us_to_ts(&ts_end, us);
timeraddspec(&ts_end, ts_start);
nanosleep_abstime(&ts_end);
}
void cksleep_ms(int ms)
{
ts_t ts_start;
cksleep_prepare_r(&ts_start);
cksleep_ms_r(&ts_start, ms);
}
void cksleep_us(int64_t us)
{
ts_t ts_start;
cksleep_prepare_r(&ts_start);
cksleep_us_r(&ts_start, us);
}
/* Returns the microseconds difference between end and start times as a double */
double us_tvdiff(tv_t *end, tv_t *start)
{
/* Sanity check. We should only be using this for small differences so
* limit the max to 60 seconds. */
if (unlikely(end->tv_sec - start->tv_sec > 60))
return 60000000;
return (end->tv_sec - start->tv_sec) * 1000000 + (end->tv_usec - start->tv_usec);
}
/* Returns the milliseconds difference between end and start times */
int ms_tvdiff(tv_t *end, tv_t *start)
{
/* Like us_tdiff, limit to 1 hour. */
if (unlikely(end->tv_sec - start->tv_sec > 3600))
return 3600000;
return (end->tv_sec - start->tv_sec) * 1000 + (end->tv_usec - start->tv_usec) / 1000;
}
/* Returns the seconds difference between end and start times as a double */
double tvdiff(tv_t *end, tv_t *start)
{
return end->tv_sec - start->tv_sec + (end->tv_usec - start->tv_usec) / 1000000.0;
}
/* Create an exponentially decaying average over interval */
void decay_time(double *f, double fadd, double fsecs, double interval)
{
double ftotal, fprop;
if (fsecs <= 0)
return;
fprop = 1.0 - 1 / (exp(fsecs / interval));
ftotal = 1.0 + fprop;
*f += (fadd / fsecs * fprop);
*f /= ftotal;
}
/* Convert a double value into a truncated string for displaying with its
* associated suitable for Mega, Giga etc. Buf array needs to be long enough */
void suffix_string(double val, char *buf, size_t bufsiz, int sigdigits)
{
const double kilo = 1000;
const double mega = 1000000;
const double giga = 1000000000;
const double tera = 1000000000000;
const double peta = 1000000000000000;
const double exa = 1000000000000000000;
char suffix[2] = "";
bool decimal = true;
double dval;
if (val >= exa) {
val /= peta;
dval = val / kilo;
strcpy(suffix, "E");
} else if (val >= peta) {
val /= tera;
dval = val / kilo;
strcpy(suffix, "P");
} else if (val >= tera) {
val /= giga;
dval = val / kilo;
strcpy(suffix, "T");
} else if (val >= giga) {
val /= mega;
dval = val / kilo;
strcpy(suffix, "G");
} else if (val >= mega) {
val /= kilo;
dval = val / kilo;
strcpy(suffix, "M");
} else if (val >= kilo) {
dval = val / kilo;
strcpy(suffix, "K");
} else {
dval = val;
decimal = false;
}
if (!sigdigits) {
if (decimal)
snprintf(buf, bufsiz, "%.3g%s", dval, suffix);
else
snprintf(buf, bufsiz, "%d%s", (unsigned int)dval, suffix);
} else {
/* Always show sigdigits + 1, padded on right with zeroes
* followed by suffix */
int ndigits = sigdigits - 1 - (dval > 0.0 ? floor(log10(dval)) : 0);
snprintf(buf, bufsiz, "%*.*f%s", sigdigits + 1, ndigits, dval, suffix);
}
}
/* truediffone == 0x00000000FFFF0000000000000000000000000000000000000000000000000000
* Generate a 256 bit binary LE target by cutting up diff into 64 bit sized
* portions or vice versa. */
static const double truediffone = 26959535291011309493156476344723991336010898738574164086137773096960.0;
static const double bits192 = 6277101735386680763835789423207666416102355444464034512896.0;
static const double bits128 = 340282366920938463463374607431768211456.0;
static const double bits64 = 18446744073709551616.0;
/* Converts a little endian 256 bit value to a double */
double le256todouble(const uchar *target)
{
uint64_t *data64;
double dcut64;
data64 = (uint64_t *)(target + 24);
dcut64 = le64toh(*data64) * bits192;
data64 = (uint64_t *)(target + 16);
dcut64 += le64toh(*data64) * bits128;
data64 = (uint64_t *)(target + 8);
dcut64 += le64toh(*data64) * bits64;
data64 = (uint64_t *)(target);
dcut64 += le64toh(*data64);
return dcut64;
}
/* Return a difficulty from a binary target */
double diff_from_target(uchar *target)
{
double d64, dcut64;
d64 = truediffone;
dcut64 = le256todouble(target);
if (unlikely(!dcut64))
dcut64 = 1;
return d64 / dcut64;
}
/* Return the network difficulty from the block header which is in packed form,
* as a double. */
double diff_from_header(uchar *header)
{
double numerator;
uint32_t diff32;
uint8_t pow;
int powdiff;
pow = header[72];
powdiff = (8 * (0x1d - 3)) - (8 * (pow - 3));
diff32 = be32toh(*((uint32_t *)(header + 72))) & 0x00FFFFFF;
numerator = 0xFFFFULL << powdiff;
return numerator / (double)diff32;
}
void target_from_diff(uchar *target, double diff)
{
uint64_t *data64, h64;
double d64, dcut64;
if (unlikely(diff == 0.0)) {
/* This shouldn't happen but best we check to prevent a crash */
memset(target, 0xff, 32);
return;
}
d64 = truediffone;
d64 /= diff;
dcut64 = d64 / bits192;
h64 = dcut64;
data64 = (uint64_t *)(target + 24);
*data64 = htole64(h64);
dcut64 = h64;
dcut64 *= bits192;
d64 -= dcut64;
dcut64 = d64 / bits128;
h64 = dcut64;
data64 = (uint64_t *)(target + 16);
*data64 = htole64(h64);
dcut64 = h64;
dcut64 *= bits128;
d64 -= dcut64;
dcut64 = d64 / bits64;
h64 = dcut64;
data64 = (uint64_t *)(target + 8);
*data64 = htole64(h64);
dcut64 = h64;
dcut64 *= bits64;
d64 -= dcut64;
h64 = d64;
data64 = (uint64_t *)(target);
*data64 = htole64(h64);
}
void gen_hash(uchar *data, uchar *hash, int len)
{
uchar hash1[32];
sha256(data, len, hash1);
sha256(hash1, 32, hash);
}