Browse Source

Add architecture dependent sha256 assembly support on recent intel platforms, linking libckpool only statically

master
Con Kolivas 9 years ago
parent
commit
29669ee60f
  1. 29
      configure.ac
  2. 29
      src/Makefile.am
  3. 27
      src/sha2.c
  4. 32
      src/sha256_code_release/open_software_license.txt
  5. 586
      src/sha256_code_release/sha256_avx1.asm
  6. 826
      src/sha256_code_release/sha256_avx2_rorx2.asm
  7. 544
      src/sha256_code_release/sha256_sse4.asm

29
configure.ac

@ -42,6 +42,34 @@ AC_CHECK_HEADERS(gsl/gsl_math.h gsl/gsl_cdf.h)
AC_CHECK_HEADERS(openssl/x509.h openssl/hmac.h) AC_CHECK_HEADERS(openssl/x509.h openssl/hmac.h)
AC_CHECK_HEADERS(zlib.h) AC_CHECK_HEADERS(zlib.h)
AC_CHECK_PROG(YASM, yasm, yes)
AM_CONDITIONAL([HAVE_YASM], [test x$YASM = xyes])
rorx=
avx1=
sse4=
if test x$YASM = xyes; then
rorx=`cat /proc/cpuinfo | grep -o -m 1 avx2`
if [test x$rorx != xavx2]; then
avx1=`cat /proc/cpuinfo | grep -o -m 1 avx`
if [test x$avx1 != xavx]; then
sse4=`cat /proc/cpuinfo | grep -o -m 1 sse4_1`
fi
fi
fi
AM_CONDITIONAL([HAVE_AVX2], [test x$rorx = xavx2])
AM_CONDITIONAL([HAVE_AVX1], [test x$avx1 = xavx])
AM_CONDITIONAL([HAVE_SSE4], [test x$sse4 = xsse4_1])
if test x$rorx = xavx2; then
AC_DEFINE([USE_AVX2], [1], [Use avx2 assembly instructions for sha256])
fi
if test x$avx1 = xavx; then
AC_DEFINE([USE_AVX1], [1], [Use avx1 assembly instructions for sha256])
fi
if test x$sse4 = xsse4_1; then
AC_DEFINE([USE_SSE4], [1], [Use sse4 assembly instructions for sha256])
fi
AC_CONFIG_SUBDIRS([src/jansson-2.6]) AC_CONFIG_SUBDIRS([src/jansson-2.6])
JANSSON_LIBS="jansson-2.6/src/.libs/libjansson.a" JANSSON_LIBS="jansson-2.6/src/.libs/libjansson.a"
@ -79,6 +107,7 @@ AC_OUTPUT([Makefile] [src/Makefile])
echo echo
echo "Compilation............: make (or gmake)" echo "Compilation............: make (or gmake)"
echo " YASM (Intel ASM).....: $YASM"
echo " CPPFLAGS.............: $CPPFLAGS" echo " CPPFLAGS.............: $CPPFLAGS"
echo " CFLAGS...............: $CFLAGS" echo " CFLAGS...............: $CFLAGS"
echo " LDFLAGS..............: $LDFLAGS" echo " LDFLAGS..............: $LDFLAGS"

29
src/Makefile.am

@ -3,25 +3,40 @@ SUBDIRS = jansson-2.6
ACLOCAL_AMFLAGS = -I m4 ACLOCAL_AMFLAGS = -I m4
AM_CPPFLAGS = -I$(top_srcdir)/src/jansson-2.6/src AM_CPPFLAGS = -I$(top_srcdir)/src/jansson-2.6/src
lib_LTLIBRARIES = libckpool.la native_objs :=
libckpool_la_SOURCES = libckpool.c libckpool.h sha2.c sha2.h
libckpool_la_LIBADD = @LIBS@ if HAVE_AVX2
native_objs += sha256_code_release/sha256_avx2_rorx2.A
endif
if HAVE_AVX1
native_objs += sha256_code_release/sha256_avx1.A
endif
if HAVE_SSE4
native_objs += sha256_code_release/sha256_sse4.A
endif
%.A: %.asm
yasm -f x64 -f elf64 -X gnu -g dwarf2 -D LINUX -o $@ $<
noinst_LIBRARIES = libckpool.a
libckpool_a_SOURCES = libckpool.c libckpool.h sha2.c sha2.h
libckpool_a_LIBADD = $(native_objs)
bin_PROGRAMS = ckpool ckpmsg notifier bin_PROGRAMS = ckpool ckpmsg notifier
ckpool_SOURCES = ckpool.c ckpool.h generator.c generator.h bitcoin.c bitcoin.h \ ckpool_SOURCES = ckpool.c ckpool.h generator.c generator.h bitcoin.c bitcoin.h \
stratifier.c stratifier.h connector.c connector.h uthash.h \ stratifier.c stratifier.h connector.c connector.h uthash.h \
utlist.h utlist.h
ckpool_LDADD = libckpool.la @JANSSON_LIBS@ ckpool_LDADD = libckpool.a @JANSSON_LIBS@ @LIBS@
ckpmsg_SOURCES = ckpmsg.c ckpmsg_SOURCES = ckpmsg.c
ckpmsg_LDADD = libckpool.la @JANSSON_LIBS@ ckpmsg_LDADD = libckpool.a @JANSSON_LIBS@
notifier_SOURCES = notifier.c notifier_SOURCES = notifier.c
notifier_LDADD = libckpool.la @JANSSON_LIBS@ notifier_LDADD = libckpool.a @JANSSON_LIBS@
if WANT_CKDB if WANT_CKDB
bin_PROGRAMS += ckdb bin_PROGRAMS += ckdb
ckdb_SOURCES = ckdb.c ckdb_cmd.c ckdb_data.c ckdb_dbio.c ckdb_btc.c \ ckdb_SOURCES = ckdb.c ckdb_cmd.c ckdb_data.c ckdb_dbio.c ckdb_btc.c \
ckdb_crypt.c ckdb.h klist.c ktree.c klist.h ktree.h ckdb_crypt.c ckdb.h klist.c ktree.c klist.h ktree.h
ckdb_LDADD = libckpool.la @JANSSON_LIBS@ @DB_LIBS@ @LIBS@ ckdb_LDADD = libckpool.a @JANSSON_LIBS@ @DB_LIBS@ @LIBS@ $(native_objs)
endif endif

27
src/sha2.c

@ -85,6 +85,31 @@ uint32_t sha256_k[64] =
/* SHA-256 functions */ /* SHA-256 functions */
#ifdef USE_AVX2
extern void sha256_rorx(const void *, uint32_t[8], uint64_t);
void sha256_transf(sha256_ctx *ctx, const unsigned char *message,
unsigned int block_nb)
{
sha256_rorx(message, ctx->h, block_nb);
}
#elif defined(USE_AVX1)
extern void sha256_avx(const unsigned char *, uint32_t[8], uint64_t);
void sha256_transf(sha256_ctx *ctx, const unsigned char *message,
unsigned int block_nb)
{
sha256_avx(message, ctx->h, block_nb);
}
#elif defined(USE_SSE4)
extern void sha256_sse4(const unsigned char *, uint32_t[8], uint64_t);
void sha256_transf(sha256_ctx *ctx, const unsigned char *message,
unsigned int block_nb)
{
sha256_sse4(message, ctx->h, block_nb);
}
#else
void sha256_transf(sha256_ctx *ctx, const unsigned char *message, void sha256_transf(sha256_ctx *ctx, const unsigned char *message,
unsigned int block_nb) unsigned int block_nb)
{ {
@ -130,7 +155,7 @@ void sha256_transf(sha256_ctx *ctx, const unsigned char *message,
} }
} }
} }
#endif
void sha256(const unsigned char *message, unsigned int len, unsigned char *digest) void sha256(const unsigned char *message, unsigned int len, unsigned char *digest)
{ {
sha256_ctx ctx; sha256_ctx ctx;

32
src/sha256_code_release/open_software_license.txt

@ -0,0 +1,32 @@
Copyright (c) 2012, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the
distribution.
* Neither the name of the Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

586
src/sha256_code_release/sha256_avx1.asm

@ -0,0 +1,586 @@
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright (c) 2012, Intel Corporation
;
; All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions are
; met:
;
; * Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
;
; * Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in the
; documentation and/or other materials provided with the
; distribution.
;
; * Neither the name of the Intel Corporation nor the names of its
; contributors may be used to endorse or promote products derived from
; this software without specific prior written permission.
;
;
; THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION "AS IS" AND ANY
; EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
; PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
; CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Example YASM command lines:
; Windows: yasm -Xvc -f x64 -rnasm -pnasm -o sha256_avx1.obj -g cv8 sha256_avx1.asm
; Linux: yasm -f x64 -f elf64 -X gnu -g dwarf2 -D LINUX -o sha256_avx1.o sha256_avx1.asm
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; This code is described in an Intel White-Paper:
; "Fast SHA-256 Implementations on Intel Architecture Processors"
;
; To find it, surf to http://www.intel.com/p/en_US/embedded
; and search for that title.
; The paper is expected to be released roughly at the end of April, 2012
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; This code schedules 1 blocks at a time, with 4 lanes per block
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%define VMOVDQ vmovdqu ;; assume buffers not aligned
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Define Macros
; addm [mem], reg
; Add reg to mem using reg-mem add and store
%macro addm 2
add %2, %1
mov %1, %2
%endm
%macro MY_ROR 2
shld %1,%1,(32-(%2))
%endm
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; COPY_XMM_AND_BSWAP xmm, [mem], byte_flip_mask
; Load xmm with mem and byte swap each dword
%macro COPY_XMM_AND_BSWAP 3
VMOVDQ %1, %2
vpshufb %1, %1, %3
%endmacro
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%define X0 xmm4
%define X1 xmm5
%define X2 xmm6
%define X3 xmm7
%define XTMP0 xmm0
%define XTMP1 xmm1
%define XTMP2 xmm2
%define XTMP3 xmm3
%define XTMP4 xmm8
%define XFER xmm9
%define XTMP5 xmm11
%define SHUF_00BA xmm10 ; shuffle xBxA -> 00BA
%define SHUF_DC00 xmm12 ; shuffle xDxC -> DC00
%define BYTE_FLIP_MASK xmm13
%ifdef LINUX
%define NUM_BLKS rdx ; 3rd arg
%define CTX rsi ; 2nd arg
%define INP rdi ; 1st arg
%define SRND rdi ; clobbers INP
%define c ecx
%define d r8d
%define e edx
%else
%define NUM_BLKS r8 ; 3rd arg
%define CTX rdx ; 2nd arg
%define INP rcx ; 1st arg
%define SRND rcx ; clobbers INP
%define c edi
%define d esi
%define e r8d
%endif
%define TBL rbp
%define a eax
%define b ebx
%define f r9d
%define g r10d
%define h r11d
%define y0 r13d
%define y1 r14d
%define y2 r15d
_INP_END_SIZE equ 8
_INP_SIZE equ 8
_XFER_SIZE equ 8
%ifdef LINUX
_XMM_SAVE_SIZE equ 0
%else
_XMM_SAVE_SIZE equ 8*16
%endif
; STACK_SIZE plus pushes must be an odd multiple of 8
_ALIGN_SIZE equ 8
_INP_END equ 0
_INP equ _INP_END + _INP_END_SIZE
_XFER equ _INP + _INP_SIZE
_XMM_SAVE equ _XFER + _XFER_SIZE + _ALIGN_SIZE
STACK_SIZE equ _XMM_SAVE + _XMM_SAVE_SIZE
; rotate_Xs
; Rotate values of symbols X0...X3
%macro rotate_Xs 0
%xdefine X_ X0
%xdefine X0 X1
%xdefine X1 X2
%xdefine X2 X3
%xdefine X3 X_
%endm
; ROTATE_ARGS
; Rotate values of symbols a...h
%macro ROTATE_ARGS 0
%xdefine TMP_ h
%xdefine h g
%xdefine g f
%xdefine f e
%xdefine e d
%xdefine d c
%xdefine c b
%xdefine b a
%xdefine a TMP_
%endm
%macro FOUR_ROUNDS_AND_SCHED 0
;; compute s0 four at a time and s1 two at a time
;; compute W[-16] + W[-7] 4 at a time
;vmovdqa XTMP0, X3
mov y0, e ; y0 = e
MY_ROR y0, (25-11) ; y0 = e >> (25-11)
mov y1, a ; y1 = a
vpalignr XTMP0, X3, X2, 4 ; XTMP0 = W[-7]
MY_ROR y1, (22-13) ; y1 = a >> (22-13)
xor y0, e ; y0 = e ^ (e >> (25-11))
mov y2, f ; y2 = f
MY_ROR y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6))
;vmovdqa XTMP1, X1
xor y1, a ; y1 = a ^ (a >> (22-13)
xor y2, g ; y2 = f^g
vpaddd XTMP0, XTMP0, X0 ; XTMP0 = W[-7] + W[-16]
xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and y2, e ; y2 = (f^g)&e
MY_ROR y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2))
;; compute s0
vpalignr XTMP1, X1, X0, 4 ; XTMP1 = W[-15]
xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
MY_ROR y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
xor y2, g ; y2 = CH = ((f^g)&e)^g
MY_ROR y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add y2, y0 ; y2 = S1 + CH
add y2, [rsp + _XFER + 0*4] ; y2 = k + w + S1 + CH
mov y0, a ; y0 = a
add h, y2 ; h = h + S1 + CH + k + w
mov y2, a ; y2 = a
vpsrld XTMP2, XTMP1, 7
or y0, c ; y0 = a|c
add d, h ; d = d + h + S1 + CH + k + w
and y2, c ; y2 = a&c
vpslld XTMP3, XTMP1, (32-7)
and y0, b ; y0 = (a|c)&b
add h, y1 ; h = h + S1 + CH + k + w + S0
vpor XTMP3, XTMP3, XTMP2 ; XTMP1 = W[-15] MY_ROR 7
or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c)
add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
mov y0, e ; y0 = e
mov y1, a ; y1 = a
MY_ROR y0, (25-11) ; y0 = e >> (25-11)
xor y0, e ; y0 = e ^ (e >> (25-11))
mov y2, f ; y2 = f
MY_ROR y1, (22-13) ; y1 = a >> (22-13)
vpsrld XTMP2, XTMP1,18
xor y1, a ; y1 = a ^ (a >> (22-13)
MY_ROR y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6))
xor y2, g ; y2 = f^g
vpsrld XTMP4, XTMP1, 3 ; XTMP4 = W[-15] >> 3
MY_ROR y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2))
xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and y2, e ; y2 = (f^g)&e
MY_ROR y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
vpslld XTMP1, XTMP1, (32-18)
xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
xor y2, g ; y2 = CH = ((f^g)&e)^g
vpxor XTMP3, XTMP3, XTMP1
add y2, y0 ; y2 = S1 + CH
add y2, [rsp + _XFER + 1*4] ; y2 = k + w + S1 + CH
MY_ROR y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
vpxor XTMP3, XTMP3, XTMP2 ; XTMP1 = W[-15] MY_ROR 7 ^ W[-15] MY_ROR 18
mov y0, a ; y0 = a
add h, y2 ; h = h + S1 + CH + k + w
mov y2, a ; y2 = a
vpxor XTMP1, XTMP3, XTMP4 ; XTMP1 = s0
or y0, c ; y0 = a|c
add d, h ; d = d + h + S1 + CH + k + w
and y2, c ; y2 = a&c
;; compute low s1
vpshufd XTMP2, X3, 11111010b ; XTMP2 = W[-2] {BBAA}
and y0, b ; y0 = (a|c)&b
add h, y1 ; h = h + S1 + CH + k + w + S0
vpaddd XTMP0, XTMP0, XTMP1 ; XTMP0 = W[-16] + W[-7] + s0
or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c)
add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
;vmovdqa XTMP3, XTMP2 ; XTMP3 = W[-2] {BBAA}
mov y0, e ; y0 = e
mov y1, a ; y1 = a
MY_ROR y0, (25-11) ; y0 = e >> (25-11)
;vmovdqa XTMP4, XTMP2 ; XTMP4 = W[-2] {BBAA}
xor y0, e ; y0 = e ^ (e >> (25-11))
MY_ROR y1, (22-13) ; y1 = a >> (22-13)
mov y2, f ; y2 = f
xor y1, a ; y1 = a ^ (a >> (22-13)
MY_ROR y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6))
vpsrld XTMP4, XTMP2, 10 ; XTMP4 = W[-2] >> 10 {BBAA}
xor y2, g ; y2 = f^g
vpsrlq XTMP3, XTMP2, 19 ; XTMP3 = W[-2] MY_ROR 19 {xBxA}
xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and y2, e ; y2 = (f^g)&e
vpsrlq XTMP2, XTMP2, 17 ; XTMP2 = W[-2] MY_ROR 17 {xBxA}
MY_ROR y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2))
xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
xor y2, g ; y2 = CH = ((f^g)&e)^g
MY_ROR y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
vpxor XTMP2, XTMP2, XTMP3
add y2, y0 ; y2 = S1 + CH
MY_ROR y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add y2, [rsp + _XFER + 2*4] ; y2 = k + w + S1 + CH
vpxor XTMP4, XTMP4, XTMP2 ; XTMP4 = s1 {xBxA}
mov y0, a ; y0 = a
add h, y2 ; h = h + S1 + CH + k + w
mov y2, a ; y2 = a
vpshufb XTMP4, XTMP4, SHUF_00BA ; XTMP4 = s1 {00BA}
or y0, c ; y0 = a|c
add d, h ; d = d + h + S1 + CH + k + w
and y2, c ; y2 = a&c
vpaddd XTMP0, XTMP0, XTMP4 ; XTMP0 = {..., ..., W[1], W[0]}
and y0, b ; y0 = (a|c)&b
add h, y1 ; h = h + S1 + CH + k + w + S0
;; compute high s1
vpshufd XTMP2, XTMP0, 01010000b ; XTMP2 = W[-2] {DDCC}
or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c)
add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
;vmovdqa XTMP3, XTMP2 ; XTMP3 = W[-2] {DDCC}
mov y0, e ; y0 = e
MY_ROR y0, (25-11) ; y0 = e >> (25-11)
mov y1, a ; y1 = a
;vmovdqa XTMP5, XTMP2 ; XTMP5 = W[-2] {DDCC}
MY_ROR y1, (22-13) ; y1 = a >> (22-13)
xor y0, e ; y0 = e ^ (e >> (25-11))
mov y2, f ; y2 = f
MY_ROR y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6))
vpsrld XTMP5, XTMP2, 10 ; XTMP5 = W[-2] >> 10 {DDCC}
xor y1, a ; y1 = a ^ (a >> (22-13)
xor y2, g ; y2 = f^g
vpsrlq XTMP3, XTMP2, 19 ; XTMP3 = W[-2] MY_ROR 19 {xDxC}
xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and y2, e ; y2 = (f^g)&e
MY_ROR y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2))
vpsrlq XTMP2, XTMP2, 17 ; XTMP2 = W[-2] MY_ROR 17 {xDxC}
xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
MY_ROR y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
xor y2, g ; y2 = CH = ((f^g)&e)^g
vpxor XTMP2, XTMP2, XTMP3
MY_ROR y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add y2, y0 ; y2 = S1 + CH
add y2, [rsp + _XFER + 3*4] ; y2 = k + w + S1 + CH
vpxor XTMP5, XTMP5, XTMP2 ; XTMP5 = s1 {xDxC}
mov y0, a ; y0 = a
add h, y2 ; h = h + S1 + CH + k + w
mov y2, a ; y2 = a
vpshufb XTMP5, XTMP5, SHUF_DC00 ; XTMP5 = s1 {DC00}
or y0, c ; y0 = a|c
add d, h ; d = d + h + S1 + CH + k + w
and y2, c ; y2 = a&c
vpaddd X0, XTMP5, XTMP0 ; X0 = {W[3], W[2], W[1], W[0]}
and y0, b ; y0 = (a|c)&b
add h, y1 ; h = h + S1 + CH + k + w + S0
or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c)
add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
rotate_Xs
%endm
;; input is [rsp + _XFER + %1 * 4]
%macro DO_ROUND 1
mov y0, e ; y0 = e
MY_ROR y0, (25-11) ; y0 = e >> (25-11)
mov y1, a ; y1 = a
xor y0, e ; y0 = e ^ (e >> (25-11))
MY_ROR y1, (22-13) ; y1 = a >> (22-13)
mov y2, f ; y2 = f
xor y1, a ; y1 = a ^ (a >> (22-13)
MY_ROR y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6))
xor y2, g ; y2 = f^g
xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
MY_ROR y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2))
and y2, e ; y2 = (f^g)&e
xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
MY_ROR y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
xor y2, g ; y2 = CH = ((f^g)&e)^g
add y2, y0 ; y2 = S1 + CH
MY_ROR y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add y2, [rsp + _XFER + %1 * 4] ; y2 = k + w + S1 + CH
mov y0, a ; y0 = a
add h, y2 ; h = h + S1 + CH + k + w
mov y2, a ; y2 = a
or y0, c ; y0 = a|c
add d, h ; d = d + h + S1 + CH + k + w
and y2, c ; y2 = a&c
and y0, b ; y0 = (a|c)&b
add h, y1 ; h = h + S1 + CH + k + w + S0
or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c)
add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
%endm
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; void sha256_avx(void *input_data, UINT32 digest[8], UINT64 num_blks)
;; arg 1 : pointer to input data
;; arg 2 : pointer to digest
;; arg 3 : Num blocks
section .text
global sha256_avx
align 32
sha256_avx:
push rbx
%ifndef LINUX
push rsi
push rdi
%endif
push rbp
push r13
push r14
push r15
sub rsp,STACK_SIZE
%ifndef LINUX
vmovdqa [rsp + _XMM_SAVE + 0*16],xmm6
vmovdqa [rsp + _XMM_SAVE + 1*16],xmm7
vmovdqa [rsp + _XMM_SAVE + 2*16],xmm8
vmovdqa [rsp + _XMM_SAVE + 3*16],xmm9
vmovdqa [rsp + _XMM_SAVE + 4*16],xmm10
vmovdqa [rsp + _XMM_SAVE + 5*16],xmm11
vmovdqa [rsp + _XMM_SAVE + 6*16],xmm12
vmovdqa [rsp + _XMM_SAVE + 7*16],xmm13
%endif
shl NUM_BLKS, 6 ; convert to bytes
jz done_hash
add NUM_BLKS, INP ; pointer to end of data
mov [rsp + _INP_END], NUM_BLKS
;; load initial digest
mov a,[4*0 + CTX]
mov b,[4*1 + CTX]
mov c,[4*2 + CTX]
mov d,[4*3 + CTX]
mov e,[4*4 + CTX]
mov f,[4*5 + CTX]
mov g,[4*6 + CTX]
mov h,[4*7 + CTX]
vmovdqa BYTE_FLIP_MASK, [PSHUFFLE_BYTE_FLIP_MASK wrt rip]
vmovdqa SHUF_00BA, [_SHUF_00BA wrt rip]
vmovdqa SHUF_DC00, [_SHUF_DC00 wrt rip]
loop0:
lea TBL,[K256 wrt rip]
;; byte swap first 16 dwords
COPY_XMM_AND_BSWAP X0, [INP + 0*16], BYTE_FLIP_MASK
COPY_XMM_AND_BSWAP X1, [INP + 1*16], BYTE_FLIP_MASK
COPY_XMM_AND_BSWAP X2, [INP + 2*16], BYTE_FLIP_MASK
COPY_XMM_AND_BSWAP X3, [INP + 3*16], BYTE_FLIP_MASK
mov [rsp + _INP], INP
;; schedule 48 input dwords, by doing 3 rounds of 16 each
mov SRND, 3
align 16
loop1:
vpaddd XFER, X0, [TBL + 0*16]
vmovdqa [rsp + _XFER], XFER
FOUR_ROUNDS_AND_SCHED
vpaddd XFER, X0, [TBL + 1*16]
vmovdqa [rsp + _XFER], XFER
FOUR_ROUNDS_AND_SCHED
vpaddd XFER, X0, [TBL + 2*16]
vmovdqa [rsp + _XFER], XFER
FOUR_ROUNDS_AND_SCHED
vpaddd XFER, X0, [TBL + 3*16]
vmovdqa [rsp + _XFER], XFER
add TBL, 4*16
FOUR_ROUNDS_AND_SCHED
sub SRND, 1
jne loop1
mov SRND, 2
loop2:
vpaddd XFER, X0, [TBL + 0*16]
vmovdqa [rsp + _XFER], XFER
DO_ROUND 0
DO_ROUND 1
DO_ROUND 2
DO_ROUND 3
vpaddd XFER, X1, [TBL + 1*16]
vmovdqa [rsp + _XFER], XFER
add TBL, 2*16
DO_ROUND 0
DO_ROUND 1
DO_ROUND 2
DO_ROUND 3
vmovdqa X0, X2
vmovdqa X1, X3
sub SRND, 1
jne loop2
addm [4*0 + CTX],a
addm [4*1 + CTX],b
addm [4*2 + CTX],c
addm [4*3 + CTX],d
addm [4*4 + CTX],e
addm [4*5 + CTX],f
addm [4*6 + CTX],g
addm [4*7 + CTX],h
mov INP, [rsp + _INP]
add INP, 64
cmp INP, [rsp + _INP_END]
jne loop0
done_hash:
%ifndef LINUX
vmovdqa xmm6,[rsp + _XMM_SAVE + 0*16]
vmovdqa xmm7,[rsp + _XMM_SAVE + 1*16]
vmovdqa xmm8,[rsp + _XMM_SAVE + 2*16]
vmovdqa xmm9,[rsp + _XMM_SAVE + 3*16]
vmovdqa xmm10,[rsp + _XMM_SAVE + 4*16]
vmovdqa xmm11,[rsp + _XMM_SAVE + 5*16]
vmovdqa xmm12,[rsp + _XMM_SAVE + 6*16]
vmovdqa xmm13,[rsp + _XMM_SAVE + 7*16]
%endif
add rsp, STACK_SIZE
pop r15
pop r14
pop r13
pop rbp
%ifndef LINUX
pop rdi
pop rsi
%endif
pop rbx
ret
section .data
align 64
K256:
dd 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
dd 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
dd 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
dd 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
dd 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
dd 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
dd 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
dd 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
dd 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
dd 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
dd 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
dd 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
dd 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
dd 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
dd 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
dd 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
PSHUFFLE_BYTE_FLIP_MASK: ddq 0x0c0d0e0f08090a0b0405060700010203
; shuffle xBxA -> 00BA
_SHUF_00BA: ddq 0xFFFFFFFFFFFFFFFF0b0a090803020100
; shuffle xDxC -> DC00
_SHUF_DC00: ddq 0x0b0a090803020100FFFFFFFFFFFFFFFF

826
src/sha256_code_release/sha256_avx2_rorx2.asm

@ -0,0 +1,826 @@
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright (c) 2012, Intel Corporation
;
; All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions are
; met:
;
; * Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
;
; * Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in the
; documentation and/or other materials provided with the
; distribution.
;
; * Neither the name of the Intel Corporation nor the names of its
; contributors may be used to endorse or promote products derived from
; this software without specific prior written permission.
;
;
; THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION "AS IS" AND ANY
; EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
; PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
; CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Example YASM command lines:
; Windows: yasm -Xvc -f x64 -rnasm -pnasm -o sha256_avx2_rorx2.obj -g cv8 sha256_avx2_rorx2.asm
; Linux: yasm -f x64 -f elf64 -X gnu -g dwarf2 -D LINUX -o sha256_avx2_rorx2.o sha256_avx2_rorx2.asm
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; This code is described in an Intel White-Paper:
; "Fast SHA-256 Implementations on Intel Architecture Processors"
;
; To find it, surf to http://www.intel.com/p/en_US/embedded
; and search for that title.
; The paper is expected to be released roughly at the end of April, 2012
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; This code schedules 2 blocks at a time, with 4 lanes per block
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%define VMOVDQ vmovdqu ;; assume buffers not aligned
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Define Macros
; addm [mem], reg
; Add reg to mem using reg-mem add and store
%macro addm 2
add %2, %1
mov %1, %2
%endm
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%define X0 ymm4
%define X1 ymm5
%define X2 ymm6
%define X3 ymm7
; XMM versions of above
%define XWORD0 xmm4
%define XWORD1 xmm5
%define XWORD2 xmm6
%define XWORD3 xmm7
%define XTMP0 ymm0
%define XTMP1 ymm1
%define XTMP2 ymm2
%define XTMP3 ymm3
%define XTMP4 ymm8
%define XFER ymm9
%define XTMP5 ymm11
%define SHUF_00BA ymm10 ; shuffle xBxA -> 00BA
%define SHUF_DC00 ymm12 ; shuffle xDxC -> DC00
%define BYTE_FLIP_MASK ymm13
%define X_BYTE_FLIP_MASK xmm13 ; XMM version of BYTE_FLIP_MASK
%ifdef LINUX
%define NUM_BLKS rdx ; 3rd arg
%define CTX rsi ; 2nd arg
%define INP rdi ; 1st arg
%define c ecx
%define d r8d
%define e edx ; clobbers NUM_BLKS
%define y3 edi ; clobbers INP
%else
%define NUM_BLKS r8 ; 3rd arg
%define CTX rdx ; 2nd arg
%define INP rcx ; 1st arg
%define c edi
%define d esi
%define e r8d ; clobbers NUM_BLKS
%define y3 ecx ; clobbers INP
%endif
%define TBL rbp
%define SRND CTX ; SRND is same register as CTX
%define a eax
%define b ebx
%define f r9d
%define g r10d
%define h r11d
%define old_h r11d
%define T1 r12d
%define y0 r13d
%define y1 r14d
%define y2 r15d
_XFER_SIZE equ 2*64*4 ; 2 blocks, 64 rounds, 4 bytes/round
%ifdef LINUX
_XMM_SAVE_SIZE equ 0
%else
_XMM_SAVE_SIZE equ 8*16
%endif
_INP_END_SIZE equ 8
_INP_SIZE equ 8
_CTX_SIZE equ 8
_RSP_SIZE equ 8
_XFER equ 0
_XMM_SAVE equ _XFER + _XFER_SIZE
_INP_END equ _XMM_SAVE + _XMM_SAVE_SIZE
_INP equ _INP_END + _INP_END_SIZE
_CTX equ _INP + _INP_SIZE
_RSP equ _CTX + _CTX_SIZE
STACK_SIZE equ _RSP + _RSP_SIZE
; rotate_Xs
; Rotate values of symbols X0...X3
%macro rotate_Xs 0
%xdefine X_ X0
%xdefine X0 X1
%xdefine X1 X2
%xdefine X2 X3
%xdefine X3 X_
%endm
; ROTATE_ARGS
; Rotate values of symbols a...h
%macro ROTATE_ARGS 0
%xdefine old_h h
%xdefine TMP_ h
%xdefine h g
%xdefine g f
%xdefine f e
%xdefine e d
%xdefine d c
%xdefine c b
%xdefine b a
%xdefine a TMP_
%endm
%macro FOUR_ROUNDS_AND_SCHED 1
%define %%XFER %1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 0 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov y3, a ; y3 = a ; MAJA
rorx y0, e, 25 ; y0 = e >> 25 ; S1A
rorx y1, e, 11 ; y1 = e >> 11 ; S1B
add h, dword[%%XFER+0*4] ; h = k + w + h ; --
or y3, c ; y3 = a|c ; MAJA
vpalignr XTMP0, X3, X2, 4 ; XTMP0 = W[-7]
mov y2, f ; y2 = f ; CH
rorx T1, a, 13 ; T1 = a >> 13 ; S0B
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1
xor y2, g ; y2 = f^g ; CH
vpaddd XTMP0, XTMP0, X0 ; XTMP0 = W[-7] + W[-16]; y1 = (e >> 6) ; S1
rorx y1, e, 6 ; y1 = (e >> 6) ; S1
and y2, e ; y2 = (f^g)&e ; CH
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1
rorx y1, a, 22 ; y1 = a >> 22 ; S0A
add d, h ; d = k + w + h + d ; --
and y3, b ; y3 = (a|c)&b ; MAJA
vpalignr XTMP1, X1, X0, 4 ; XTMP1 = W[-15]
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0
rorx T1, a, 2 ; T1 = (a >> 2) ; S0
xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH
vpsrld XTMP2, XTMP1, 7
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0
mov T1, a ; T1 = a ; MAJB
and T1, c ; T1 = a&c ; MAJB
add y2, y0 ; y2 = S1 + CH ; --
vpslld XTMP3, XTMP1, (32-7)
or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ
add h, y1 ; h = k + w + h + S0 ; --
add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; --
vpor XTMP3, XTMP3, XTMP2 ; XTMP3 = W[-15] ror 7
vpsrld XTMP2, XTMP1,18
add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
add h, y3 ; h = t1 + S0 + MAJ ; --
ROTATE_ARGS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov y3, a ; y3 = a ; MAJA
rorx y0, e, 25 ; y0 = e >> 25 ; S1A
rorx y1, e, 11 ; y1 = e >> 11 ; S1B
add h, dword[%%XFER+1*4] ; h = k + w + h ; --
or y3, c ; y3 = a|c ; MAJA
vpsrld XTMP4, XTMP1, 3 ; XTMP4 = W[-15] >> 3
mov y2, f ; y2 = f ; CH
rorx T1, a, 13 ; T1 = a >> 13 ; S0B
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1
xor y2, g ; y2 = f^g ; CH
rorx y1, e, 6 ; y1 = (e >> 6) ; S1
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1
rorx y1, a, 22 ; y1 = a >> 22 ; S0A
and y2, e ; y2 = (f^g)&e ; CH
add d, h ; d = k + w + h + d ; --
vpslld XTMP1, XTMP1, (32-18)
and y3, b ; y3 = (a|c)&b ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0
vpxor XTMP3, XTMP3, XTMP1
rorx T1, a, 2 ; T1 = (a >> 2) ; S0
xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH
vpxor XTMP3, XTMP3, XTMP2 ; XTMP3 = W[-15] ror 7 ^ W[-15] ror 18
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0
mov T1, a ; T1 = a ; MAJB
and T1, c ; T1 = a&c ; MAJB
add y2, y0 ; y2 = S1 + CH ; --
vpxor XTMP1, XTMP3, XTMP4 ; XTMP1 = s0
vpshufd XTMP2, X3, 11111010b ; XTMP2 = W[-2] {BBAA}
or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ
add h, y1 ; h = k + w + h + S0 ; --
vpaddd XTMP0, XTMP0, XTMP1 ; XTMP0 = W[-16] + W[-7] + s0
add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; --
add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
add h, y3 ; h = t1 + S0 + MAJ ; --
vpsrld XTMP4, XTMP2, 10 ; XTMP4 = W[-2] >> 10 {BBAA}
ROTATE_ARGS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov y3, a ; y3 = a ; MAJA
rorx y0, e, 25 ; y0 = e >> 25 ; S1A
add h, [%%XFER+2*4] ; h = k + w + h ; --
vpsrlq XTMP3, XTMP2, 19 ; XTMP3 = W[-2] ror 19 {xBxA}
rorx y1, e, 11 ; y1 = e >> 11 ; S1B
or y3, c ; y3 = a|c ; MAJA
mov y2, f ; y2 = f ; CH
xor y2, g ; y2 = f^g ; CH
rorx T1, a, 13 ; T1 = a >> 13 ; S0B
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1
vpsrlq XTMP2, XTMP2, 17 ; XTMP2 = W[-2] ror 17 {xBxA}
and y2, e ; y2 = (f^g)&e ; CH
rorx y1, e, 6 ; y1 = (e >> 6) ; S1
vpxor XTMP2, XTMP2, XTMP3
add d, h ; d = k + w + h + d ; --
and y3, b ; y3 = (a|c)&b ; MAJA
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1
rorx y1, a, 22 ; y1 = a >> 22 ; S0A
vpxor XTMP4, XTMP4, XTMP2 ; XTMP4 = s1 {xBxA}
xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH
vpshufb XTMP4, XTMP4, SHUF_00BA ; XTMP4 = s1 {00BA}
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0
rorx T1, a, 2 ; T1 = (a >> 2) ; S0
vpaddd XTMP0, XTMP0, XTMP4 ; XTMP0 = {..., ..., W[1], W[0]}
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0
mov T1, a ; T1 = a ; MAJB
and T1, c ; T1 = a&c ; MAJB
add y2, y0 ; y2 = S1 + CH ; --
vpshufd XTMP2, XTMP0, 01010000b ; XTMP2 = W[-2] {DDCC}
or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ
add h, y1 ; h = k + w + h + S0 ; --
add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; --
add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
add h, y3 ; h = t1 + S0 + MAJ ; --
ROTATE_ARGS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 3 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov y3, a ; y3 = a ; MAJA
rorx y0, e, 25 ; y0 = e >> 25 ; S1A
rorx y1, e, 11 ; y1 = e >> 11 ; S1B
add h, dword[%%XFER+3*4] ; h = k + w + h ; --
or y3, c ; y3 = a|c ; MAJA
vpsrld XTMP5, XTMP2, 10 ; XTMP5 = W[-2] >> 10 {DDCC}
mov y2, f ; y2 = f ; CH
rorx T1, a, 13 ; T1 = a >> 13 ; S0B
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1
xor y2, g ; y2 = f^g ; CH
vpsrlq XTMP3, XTMP2, 19 ; XTMP3 = W[-2] ror 19 {xDxC}
rorx y1, e, 6 ; y1 = (e >> 6) ; S1
and y2, e ; y2 = (f^g)&e ; CH
add d, h ; d = k + w + h + d ; --
and y3, b ; y3 = (a|c)&b ; MAJA
vpsrlq XTMP2, XTMP2, 17 ; XTMP2 = W[-2] ror 17 {xDxC}
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1
xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH
vpxor XTMP2, XTMP2, XTMP3
rorx y1, a, 22 ; y1 = a >> 22 ; S0A
add y2, y0 ; y2 = S1 + CH ; --
vpxor XTMP5, XTMP5, XTMP2 ; XTMP5 = s1 {xDxC}
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0
add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; --
rorx T1, a, 2 ; T1 = (a >> 2) ; S0
vpshufb XTMP5, XTMP5, SHUF_DC00 ; XTMP5 = s1 {DC00}
vpaddd X0, XTMP5, XTMP0 ; X0 = {W[3], W[2], W[1], W[0]}
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0
mov T1, a ; T1 = a ; MAJB
and T1, c ; T1 = a&c ; MAJB
or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ
add h, y1 ; h = k + w + h + S0 ; --
add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
add h, y3 ; h = t1 + S0 + MAJ ; --
ROTATE_ARGS
rotate_Xs
%endm
%macro DO_4ROUNDS 1
%define %%XFER %1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 0 ;;;;;;;;;;;;;;;;;;;;;;;;;;;
mov y2, f ; y2 = f ; CH
rorx y0, e, 25 ; y0 = e >> 25 ; S1A
rorx y1, e, 11 ; y1 = e >> 11 ; S1B
xor y2, g ; y2 = f^g ; CH
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1
rorx y1, e, 6 ; y1 = (e >> 6) ; S1
and y2, e ; y2 = (f^g)&e ; CH
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1
rorx T1, a, 13 ; T1 = a >> 13 ; S0B
xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH
rorx y1, a, 22 ; y1 = a >> 22 ; S0A
mov y3, a ; y3 = a ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0
rorx T1, a, 2 ; T1 = (a >> 2) ; S0
add h, dword[%%XFER + 4*0] ; h = k + w + h ; --
or y3, c ; y3 = a|c ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0
mov T1, a ; T1 = a ; MAJB
and y3, b ; y3 = (a|c)&b ; MAJA
and T1, c ; T1 = a&c ; MAJB
add y2, y0 ; y2 = S1 + CH ; --
add d, h ; d = k + w + h + d ; --
or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ
add h, y1 ; h = k + w + h + S0 ; --
add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; --
;add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
;add h, y3 ; h = t1 + S0 + MAJ ; --
ROTATE_ARGS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;
add old_h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
mov y2, f ; y2 = f ; CH
rorx y0, e, 25 ; y0 = e >> 25 ; S1A
rorx y1, e, 11 ; y1 = e >> 11 ; S1B
xor y2, g ; y2 = f^g ; CH
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1
rorx y1, e, 6 ; y1 = (e >> 6) ; S1
and y2, e ; y2 = (f^g)&e ; CH
add old_h, y3 ; h = t1 + S0 + MAJ ; --
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1
rorx T1, a, 13 ; T1 = a >> 13 ; S0B
xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH
rorx y1, a, 22 ; y1 = a >> 22 ; S0A
mov y3, a ; y3 = a ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0
rorx T1, a, 2 ; T1 = (a >> 2) ; S0
add h, dword[%%XFER + 4*1] ; h = k + w + h ; --
or y3, c ; y3 = a|c ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0
mov T1, a ; T1 = a ; MAJB
and y3, b ; y3 = (a|c)&b ; MAJA
and T1, c ; T1 = a&c ; MAJB
add y2, y0 ; y2 = S1 + CH ; --
add d, h ; d = k + w + h + d ; --
or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ
add h, y1 ; h = k + w + h + S0 ; --
add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; --
;add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
;add h, y3 ; h = t1 + S0 + MAJ ; --
ROTATE_ARGS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
add old_h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
mov y2, f ; y2 = f ; CH
rorx y0, e, 25 ; y0 = e >> 25 ; S1A
rorx y1, e, 11 ; y1 = e >> 11 ; S1B
xor y2, g ; y2 = f^g ; CH
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1
rorx y1, e, 6 ; y1 = (e >> 6) ; S1
and y2, e ; y2 = (f^g)&e ; CH
add old_h, y3 ; h = t1 + S0 + MAJ ; --
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1
rorx T1, a, 13 ; T1 = a >> 13 ; S0B
xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH
rorx y1, a, 22 ; y1 = a >> 22 ; S0A
mov y3, a ; y3 = a ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0
rorx T1, a, 2 ; T1 = (a >> 2) ; S0
add h, dword[%%XFER + 4*2] ; h = k + w + h ; --
or y3, c ; y3 = a|c ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0
mov T1, a ; T1 = a ; MAJB
and y3, b ; y3 = (a|c)&b ; MAJA
and T1, c ; T1 = a&c ; MAJB
add y2, y0 ; y2 = S1 + CH ; --
add d, h ; d = k + w + h + d ; --
or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ
add h, y1 ; h = k + w + h + S0 ; --
add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; --
;add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
;add h, y3 ; h = t1 + S0 + MAJ ; --
ROTATE_ARGS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; RND N + 3 ;;;;;;;;;;;;;;;;;;;;;;;;;;;
add old_h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
mov y2, f ; y2 = f ; CH
rorx y0, e, 25 ; y0 = e >> 25 ; S1A
rorx y1, e, 11 ; y1 = e >> 11 ; S1B
xor y2, g ; y2 = f^g ; CH
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ; S1
rorx y1, e, 6 ; y1 = (e >> 6) ; S1
and y2, e ; y2 = (f^g)&e ; CH
add old_h, y3 ; h = t1 + S0 + MAJ ; --
xor y0, y1 ; y0 = (e>>25) ^ (e>>11) ^ (e>>6) ; S1
rorx T1, a, 13 ; T1 = a >> 13 ; S0B
xor y2, g ; y2 = CH = ((f^g)&e)^g ; CH
rorx y1, a, 22 ; y1 = a >> 22 ; S0A
mov y3, a ; y3 = a ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ; S0
rorx T1, a, 2 ; T1 = (a >> 2) ; S0
add h, dword[%%XFER + 4*3] ; h = k + w + h ; --
or y3, c ; y3 = a|c ; MAJA
xor y1, T1 ; y1 = (a>>22) ^ (a>>13) ^ (a>>2) ; S0
mov T1, a ; T1 = a ; MAJB
and y3, b ; y3 = (a|c)&b ; MAJA
and T1, c ; T1 = a&c ; MAJB
add y2, y0 ; y2 = S1 + CH ; --
add d, h ; d = k + w + h + d ; --
or y3, T1 ; y3 = MAJ = (a|c)&b)|(a&c) ; MAJ
add h, y1 ; h = k + w + h + S0 ; --
add d, y2 ; d = k + w + h + d + S1 + CH = d + t1 ; --
add h, y2 ; h = k + w + h + S0 + S1 + CH = t1 + S0; --
add h, y3 ; h = t1 + S0 + MAJ ; --
ROTATE_ARGS
%endm
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; void sha256_rorx(void *input_data, UINT32 digest[8], UINT64 num_blks)
;; arg 1 : pointer to input data
;; arg 2 : pointer to digest
;; arg 3 : Num blocks
section .text
global sha256_rorx
align 32
sha256_rorx:
push rbx
%ifndef LINUX
push rsi
push rdi
%endif
push rbp
push r12
push r13
push r14
push r15
mov rax, rsp
sub rsp,STACK_SIZE
and rsp, -32
mov [rsp + _RSP], rax
%ifndef LINUX
vmovdqa [rsp + _XMM_SAVE + 0*16],xmm6
vmovdqa [rsp + _XMM_SAVE + 1*16],xmm7
vmovdqa [rsp + _XMM_SAVE + 2*16],xmm8
vmovdqa [rsp + _XMM_SAVE + 3*16],xmm9
vmovdqa [rsp + _XMM_SAVE + 4*16],xmm10
vmovdqa [rsp + _XMM_SAVE + 5*16],xmm11
vmovdqa [rsp + _XMM_SAVE + 6*16],xmm12
vmovdqa [rsp + _XMM_SAVE + 7*16],xmm13
%endif
shl NUM_BLKS, 6 ; convert to bytes
jz done_hash
lea NUM_BLKS, [NUM_BLKS + INP - 64] ; pointer to last block
mov [rsp + _INP_END], NUM_BLKS
cmp INP, NUM_BLKS
je only_one_block
;; load initial digest
mov a,[4*0 + CTX]
mov b,[4*1 + CTX]
mov c,[4*2 + CTX]
mov d,[4*3 + CTX]
mov e,[4*4 + CTX]
mov f,[4*5 + CTX]
mov g,[4*6 + CTX]
mov h,[4*7 + CTX]
vmovdqa BYTE_FLIP_MASK, [PSHUFFLE_BYTE_FLIP_MASK wrt rip]
vmovdqa SHUF_00BA, [_SHUF_00BA wrt rip]
vmovdqa SHUF_DC00, [_SHUF_DC00 wrt rip]
mov [rsp + _CTX], CTX
loop0:
lea TBL,[K256 wrt rip]
;; Load first 16 dwords from two blocks
VMOVDQ XTMP0, [INP + 0*32]
VMOVDQ XTMP1, [INP + 1*32]
VMOVDQ XTMP2, [INP + 2*32]
VMOVDQ XTMP3, [INP + 3*32]
;; byte swap data
vpshufb XTMP0, XTMP0, BYTE_FLIP_MASK
vpshufb XTMP1, XTMP1, BYTE_FLIP_MASK
vpshufb XTMP2, XTMP2, BYTE_FLIP_MASK
vpshufb XTMP3, XTMP3, BYTE_FLIP_MASK
;; transpose data into high/low halves
vperm2i128 X0, XTMP0, XTMP2, 0x20
vperm2i128 X1, XTMP0, XTMP2, 0x31
vperm2i128 X2, XTMP1, XTMP3, 0x20
vperm2i128 X3, XTMP1, XTMP3, 0x31
last_block_enter:
add INP, 64
mov [rsp + _INP], INP
;; schedule 48 input dwords, by doing 3 rounds of 12 each
xor SRND, SRND
align 16
loop1:
vpaddd XFER, X0, [TBL + SRND + 0*32]
vmovdqa [rsp + _XFER + SRND + 0*32], XFER
FOUR_ROUNDS_AND_SCHED rsp + _XFER + SRND + 0*32
vpaddd XFER, X0, [TBL + SRND + 1*32]
vmovdqa [rsp + _XFER + SRND + 1*32], XFER
FOUR_ROUNDS_AND_SCHED rsp + _XFER + SRND + 1*32
vpaddd XFER, X0, [TBL + SRND + 2*32]
vmovdqa [rsp + _XFER + SRND + 2*32], XFER
FOUR_ROUNDS_AND_SCHED rsp + _XFER + SRND + 2*32
vpaddd XFER, X0, [TBL + SRND + 3*32]
vmovdqa [rsp + _XFER + SRND + 3*32], XFER
FOUR_ROUNDS_AND_SCHED rsp + _XFER + SRND + 3*32
add SRND, 4*32
cmp SRND, 3 * 4*32
jb loop1
loop2:
;; Do last 16 rounds with no scheduling
vpaddd XFER, X0, [TBL + SRND + 0*32]
vmovdqa [rsp + _XFER + SRND + 0*32], XFER
DO_4ROUNDS rsp + _XFER + SRND + 0*32
vpaddd XFER, X1, [TBL + SRND + 1*32]
vmovdqa [rsp + _XFER + SRND + 1*32], XFER
DO_4ROUNDS rsp + _XFER + SRND + 1*32
add SRND, 2*32
vmovdqa X0, X2
vmovdqa X1, X3
cmp SRND, 4 * 4*32
jb loop2
mov CTX, [rsp + _CTX]
mov INP, [rsp + _INP]
addm [4*0 + CTX],a
addm [4*1 + CTX],b
addm [4*2 + CTX],c
addm [4*3 + CTX],d
addm [4*4 + CTX],e
addm [4*5 + CTX],f
addm [4*6 + CTX],g
addm [4*7 + CTX],h
cmp INP, [rsp + _INP_END]
ja done_hash
;;;; Do second block using previously scheduled results
xor SRND, SRND
align 16
loop3:
DO_4ROUNDS rsp + _XFER + SRND + 0*32 + 16
DO_4ROUNDS rsp + _XFER + SRND + 1*32 + 16
add SRND, 2*32
cmp SRND, 4 * 4*32
jb loop3
mov CTX, [rsp + _CTX]
mov INP, [rsp + _INP]
add INP, 64
addm [4*0 + CTX],a
addm [4*1 + CTX],b
addm [4*2 + CTX],c
addm [4*3 + CTX],d
addm [4*4 + CTX],e
addm [4*5 + CTX],f
addm [4*6 + CTX],g
addm [4*7 + CTX],h
cmp INP, [rsp + _INP_END]
jb loop0
ja done_hash
do_last_block:
;;;; do last block
lea TBL,[K256 wrt rip]
VMOVDQ XWORD0, [INP + 0*16]
VMOVDQ XWORD1, [INP + 1*16]
VMOVDQ XWORD2, [INP + 2*16]
VMOVDQ XWORD3, [INP + 3*16]
vpshufb XWORD0, XWORD0, X_BYTE_FLIP_MASK
vpshufb XWORD1, XWORD1, X_BYTE_FLIP_MASK
vpshufb XWORD2, XWORD2, X_BYTE_FLIP_MASK
vpshufb XWORD3, XWORD3, X_BYTE_FLIP_MASK
jmp last_block_enter
only_one_block:
;; load initial digest
mov a,[4*0 + CTX]
mov b,[4*1 + CTX]
mov c,[4*2 + CTX]
mov d,[4*3 + CTX]
mov e,[4*4 + CTX]
mov f,[4*5 + CTX]
mov g,[4*6 + CTX]
mov h,[4*7 + CTX]
vmovdqa BYTE_FLIP_MASK, [PSHUFFLE_BYTE_FLIP_MASK wrt rip]
vmovdqa SHUF_00BA, [_SHUF_00BA wrt rip]
vmovdqa SHUF_DC00, [_SHUF_DC00 wrt rip]
mov [rsp + _CTX], CTX
jmp do_last_block
done_hash:
%ifndef LINUX
vmovdqa xmm6,[rsp + _XMM_SAVE + 0*16]
vmovdqa xmm7,[rsp + _XMM_SAVE + 1*16]
vmovdqa xmm8,[rsp + _XMM_SAVE + 2*16]
vmovdqa xmm9,[rsp + _XMM_SAVE + 3*16]
vmovdqa xmm10,[rsp + _XMM_SAVE + 4*16]
vmovdqa xmm11,[rsp + _XMM_SAVE + 5*16]
vmovdqa xmm12,[rsp + _XMM_SAVE + 6*16]
vmovdqa xmm13,[rsp + _XMM_SAVE + 7*16]
%endif
mov rsp, [rsp + _RSP]
pop r15
pop r14
pop r13
pop r12
pop rbp
%ifndef LINUX
pop rdi
pop rsi
%endif
pop rbx
ret
section .data
align 64
K256:
dd 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
dd 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
dd 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
dd 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
dd 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
dd 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
dd 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
dd 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
dd 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
dd 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
dd 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
dd 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
dd 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
dd 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
dd 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
dd 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
dd 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
dd 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
dd 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
dd 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
dd 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
dd 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
dd 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
dd 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
dd 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
dd 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
dd 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
dd 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
dd 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
dd 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
dd 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
dd 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
PSHUFFLE_BYTE_FLIP_MASK:
ddq 0x0c0d0e0f08090a0b0405060700010203,0x0c0d0e0f08090a0b0405060700010203
; shuffle xBxA -> 00BA
_SHUF_00BA:
ddq 0xFFFFFFFFFFFFFFFF0b0a090803020100,0xFFFFFFFFFFFFFFFF0b0a090803020100
; shuffle xDxC -> DC00
_SHUF_DC00:
ddq 0x0b0a090803020100FFFFFFFFFFFFFFFF,0x0b0a090803020100FFFFFFFFFFFFFFFF

544
src/sha256_code_release/sha256_sse4.asm

@ -0,0 +1,544 @@
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright (c) 2012, Intel Corporation
;
; All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions are
; met:
;
; * Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
;
; * Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in the
; documentation and/or other materials provided with the
; distribution.
;
; * Neither the name of the Intel Corporation nor the names of its
; contributors may be used to endorse or promote products derived from
; this software without specific prior written permission.
;
;
; THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION "AS IS" AND ANY
; EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
; PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
; CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Example YASM command lines:
; Windows: yasm -Xvc -f x64 -rnasm -pnasm -o sha256_sse4.obj -g cv8 sha256_sse4.asm
; Linux: yasm -f x64 -f elf64 -X gnu -g dwarf2 -D LINUX -o sha256_sse4.o sha256_sse4.asm
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; This code is described in an Intel White-Paper:
; "Fast SHA-256 Implementations on Intel Architecture Processors"
;
; To find it, surf to http://www.intel.com/p/en_US/embedded
; and search for that title.
; The paper is expected to be released roughly at the end of April, 2012
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; This code schedules 1 blocks at a time, with 4 lanes per block
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%define MOVDQ movdqu ;; assume buffers not aligned
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Define Macros
; addm [mem], reg
; Add reg to mem using reg-mem add and store
%macro addm 2
add %2, %1
mov %1, %2
%endm
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; COPY_XMM_AND_BSWAP xmm, [mem], byte_flip_mask
; Load xmm with mem and byte swap each dword
%macro COPY_XMM_AND_BSWAP 3
MOVDQ %1, %2
pshufb %1, %3
%endmacro
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%define X0 xmm4
%define X1 xmm5
%define X2 xmm6
%define X3 xmm7
%define XTMP0 xmm0
%define XTMP1 xmm1
%define XTMP2 xmm2
%define XTMP3 xmm3
%define XTMP4 xmm8
%define XFER xmm9
%define SHUF_00BA xmm10 ; shuffle xBxA -> 00BA
%define SHUF_DC00 xmm11 ; shuffle xDxC -> DC00
%define BYTE_FLIP_MASK xmm12
%ifdef LINUX
%define NUM_BLKS rdx ; 3rd arg
%define CTX rsi ; 2nd arg
%define INP rdi ; 1st arg
%define SRND rdi ; clobbers INP
%define c ecx
%define d r8d
%define e edx
%else
%define NUM_BLKS r8 ; 3rd arg
%define CTX rdx ; 2nd arg
%define INP rcx ; 1st arg
%define SRND rcx ; clobbers INP
%define c edi
%define d esi
%define e r8d
%endif
%define TBL rbp
%define a eax
%define b ebx
%define f r9d
%define g r10d
%define h r11d
%define y0 r13d
%define y1 r14d
%define y2 r15d
_INP_END_SIZE equ 8
_INP_SIZE equ 8
_XFER_SIZE equ 8
%ifdef LINUX
_XMM_SAVE_SIZE equ 0
%else
_XMM_SAVE_SIZE equ 7*16
%endif
; STACK_SIZE plus pushes must be an odd multiple of 8
_ALIGN_SIZE equ 8
_INP_END equ 0
_INP equ _INP_END + _INP_END_SIZE
_XFER equ _INP + _INP_SIZE
_XMM_SAVE equ _XFER + _XFER_SIZE + _ALIGN_SIZE
STACK_SIZE equ _XMM_SAVE + _XMM_SAVE_SIZE
; rotate_Xs
; Rotate values of symbols X0...X3
%macro rotate_Xs 0
%xdefine X_ X0
%xdefine X0 X1
%xdefine X1 X2
%xdefine X2 X3
%xdefine X3 X_
%endm
; ROTATE_ARGS
; Rotate values of symbols a...h
%macro ROTATE_ARGS 0
%xdefine TMP_ h
%xdefine h g
%xdefine g f
%xdefine f e
%xdefine e d
%xdefine d c
%xdefine c b
%xdefine b a
%xdefine a TMP_
%endm
%macro FOUR_ROUNDS_AND_SCHED 0
;; compute s0 four at a time and s1 two at a time
;; compute W[-16] + W[-7] 4 at a time
movdqa XTMP0, X3
mov y0, e ; y0 = e
ror y0, (25-11) ; y0 = e >> (25-11)
mov y1, a ; y1 = a
palignr XTMP0, X2, 4 ; XTMP0 = W[-7]
ror y1, (22-13) ; y1 = a >> (22-13)
xor y0, e ; y0 = e ^ (e >> (25-11))
mov y2, f ; y2 = f
ror y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6))
movdqa XTMP1, X1
xor y1, a ; y1 = a ^ (a >> (22-13)
xor y2, g ; y2 = f^g
paddd XTMP0, X0 ; XTMP0 = W[-7] + W[-16]
xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and y2, e ; y2 = (f^g)&e
ror y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2))
;; compute s0
palignr XTMP1, X0, 4 ; XTMP1 = W[-15]
xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
ror y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
xor y2, g ; y2 = CH = ((f^g)&e)^g
movdqa XTMP2, XTMP1 ; XTMP2 = W[-15]
ror y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add y2, y0 ; y2 = S1 + CH
add y2, [rsp + _XFER + 0*4] ; y2 = k + w + S1 + CH
movdqa XTMP3, XTMP1 ; XTMP3 = W[-15]
mov y0, a ; y0 = a
add h, y2 ; h = h + S1 + CH + k + w
mov y2, a ; y2 = a
pslld XTMP1, (32-7)
or y0, c ; y0 = a|c
add d, h ; d = d + h + S1 + CH + k + w
and y2, c ; y2 = a&c
psrld XTMP2, 7
and y0, b ; y0 = (a|c)&b
add h, y1 ; h = h + S1 + CH + k + w + S0
por XTMP1, XTMP2 ; XTMP1 = W[-15] ror 7
or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c)
add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
movdqa XTMP2, XTMP3 ; XTMP2 = W[-15]
mov y0, e ; y0 = e
mov y1, a ; y1 = a
movdqa XTMP4, XTMP3 ; XTMP4 = W[-15]
ror y0, (25-11) ; y0 = e >> (25-11)
xor y0, e ; y0 = e ^ (e >> (25-11))
mov y2, f ; y2 = f
ror y1, (22-13) ; y1 = a >> (22-13)
pslld XTMP3, (32-18)
xor y1, a ; y1 = a ^ (a >> (22-13)
ror y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6))
xor y2, g ; y2 = f^g
psrld XTMP2, 18
ror y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2))
xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and y2, e ; y2 = (f^g)&e
ror y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
pxor XTMP1, XTMP3
xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
xor y2, g ; y2 = CH = ((f^g)&e)^g
psrld XTMP4, 3 ; XTMP4 = W[-15] >> 3
add y2, y0 ; y2 = S1 + CH
add y2, [rsp + _XFER + 1*4] ; y2 = k + w + S1 + CH
ror y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
pxor XTMP1, XTMP2 ; XTMP1 = W[-15] ror 7 ^ W[-15] ror 18
mov y0, a ; y0 = a
add h, y2 ; h = h + S1 + CH + k + w
mov y2, a ; y2 = a
pxor XTMP1, XTMP4 ; XTMP1 = s0
or y0, c ; y0 = a|c
add d, h ; d = d + h + S1 + CH + k + w
and y2, c ; y2 = a&c
;; compute low s1
pshufd XTMP2, X3, 11111010b ; XTMP2 = W[-2] {BBAA}
and y0, b ; y0 = (a|c)&b
add h, y1 ; h = h + S1 + CH + k + w + S0
paddd XTMP0, XTMP1 ; XTMP0 = W[-16] + W[-7] + s0
or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c)
add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
movdqa XTMP3, XTMP2 ; XTMP3 = W[-2] {BBAA}
mov y0, e ; y0 = e
mov y1, a ; y1 = a
ror y0, (25-11) ; y0 = e >> (25-11)
movdqa XTMP4, XTMP2 ; XTMP4 = W[-2] {BBAA}
xor y0, e ; y0 = e ^ (e >> (25-11))
ror y1, (22-13) ; y1 = a >> (22-13)
mov y2, f ; y2 = f
xor y1, a ; y1 = a ^ (a >> (22-13)
ror y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6))
psrlq XTMP2, 17 ; XTMP2 = W[-2] ror 17 {xBxA}
xor y2, g ; y2 = f^g
psrlq XTMP3, 19 ; XTMP3 = W[-2] ror 19 {xBxA}
xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and y2, e ; y2 = (f^g)&e
psrld XTMP4, 10 ; XTMP4 = W[-2] >> 10 {BBAA}
ror y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2))
xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
xor y2, g ; y2 = CH = ((f^g)&e)^g
ror y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
pxor XTMP2, XTMP3
add y2, y0 ; y2 = S1 + CH
ror y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add y2, [rsp + _XFER + 2*4] ; y2 = k + w + S1 + CH
pxor XTMP4, XTMP2 ; XTMP4 = s1 {xBxA}
mov y0, a ; y0 = a
add h, y2 ; h = h + S1 + CH + k + w
mov y2, a ; y2 = a
pshufb XTMP4, SHUF_00BA ; XTMP4 = s1 {00BA}
or y0, c ; y0 = a|c
add d, h ; d = d + h + S1 + CH + k + w
and y2, c ; y2 = a&c
paddd XTMP0, XTMP4 ; XTMP0 = {..., ..., W[1], W[0]}
and y0, b ; y0 = (a|c)&b
add h, y1 ; h = h + S1 + CH + k + w + S0
;; compute high s1
pshufd XTMP2, XTMP0, 01010000b ; XTMP2 = W[-2] {DDCC}
or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c)
add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
movdqa XTMP3, XTMP2 ; XTMP3 = W[-2] {DDCC}
mov y0, e ; y0 = e
ror y0, (25-11) ; y0 = e >> (25-11)
mov y1, a ; y1 = a
movdqa X0, XTMP2 ; X0 = W[-2] {DDCC}
ror y1, (22-13) ; y1 = a >> (22-13)
xor y0, e ; y0 = e ^ (e >> (25-11))
mov y2, f ; y2 = f
ror y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6))
psrlq XTMP2, 17 ; XTMP2 = W[-2] ror 17 {xDxC}
xor y1, a ; y1 = a ^ (a >> (22-13)
xor y2, g ; y2 = f^g
psrlq XTMP3, 19 ; XTMP3 = W[-2] ror 19 {xDxC}
xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
and y2, e ; y2 = (f^g)&e
ror y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2))
psrld X0, 10 ; X0 = W[-2] >> 10 {DDCC}
xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
ror y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
xor y2, g ; y2 = CH = ((f^g)&e)^g
pxor XTMP2, XTMP3
ror y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add y2, y0 ; y2 = S1 + CH
add y2, [rsp + _XFER + 3*4] ; y2 = k + w + S1 + CH
pxor X0, XTMP2 ; X0 = s1 {xDxC}
mov y0, a ; y0 = a
add h, y2 ; h = h + S1 + CH + k + w
mov y2, a ; y2 = a
pshufb X0, SHUF_DC00 ; X0 = s1 {DC00}
or y0, c ; y0 = a|c
add d, h ; d = d + h + S1 + CH + k + w
and y2, c ; y2 = a&c
paddd X0, XTMP0 ; X0 = {W[3], W[2], W[1], W[0]}
and y0, b ; y0 = (a|c)&b
add h, y1 ; h = h + S1 + CH + k + w + S0
or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c)
add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
rotate_Xs
%endm
;; input is [rsp + _XFER + %1 * 4]
%macro DO_ROUND 1
mov y0, e ; y0 = e
ror y0, (25-11) ; y0 = e >> (25-11)
mov y1, a ; y1 = a
xor y0, e ; y0 = e ^ (e >> (25-11))
ror y1, (22-13) ; y1 = a >> (22-13)
mov y2, f ; y2 = f
xor y1, a ; y1 = a ^ (a >> (22-13)
ror y0, (11-6) ; y0 = (e >> (11-6)) ^ (e >> (25-6))
xor y2, g ; y2 = f^g
xor y0, e ; y0 = e ^ (e >> (11-6)) ^ (e >> (25-6))
ror y1, (13-2) ; y1 = (a >> (13-2)) ^ (a >> (22-2))
and y2, e ; y2 = (f^g)&e
xor y1, a ; y1 = a ^ (a >> (13-2)) ^ (a >> (22-2))
ror y0, 6 ; y0 = S1 = (e>>6) & (e>>11) ^ (e>>25)
xor y2, g ; y2 = CH = ((f^g)&e)^g
add y2, y0 ; y2 = S1 + CH
ror y1, 2 ; y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22)
add y2, [rsp + _XFER + %1 * 4] ; y2 = k + w + S1 + CH
mov y0, a ; y0 = a
add h, y2 ; h = h + S1 + CH + k + w
mov y2, a ; y2 = a
or y0, c ; y0 = a|c
add d, h ; d = d + h + S1 + CH + k + w
and y2, c ; y2 = a&c
and y0, b ; y0 = (a|c)&b
add h, y1 ; h = h + S1 + CH + k + w + S0
or y0, y2 ; y0 = MAJ = (a|c)&b)|(a&c)
add h, y0 ; h = h + S1 + CH + k + w + S0 + MAJ
ROTATE_ARGS
%endm
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; void sha256_sse4(void *input_data, UINT32 digest[8], UINT64 num_blks)
;; arg 1 : pointer to input data
;; arg 2 : pointer to digest
;; arg 3 : Num blocks
section .text
global sha256_sse4
align 32
sha256_sse4:
push rbx
%ifndef LINUX
push rsi
push rdi
%endif
push rbp
push r13
push r14
push r15
sub rsp,STACK_SIZE
%ifndef LINUX
movdqa [rsp + _XMM_SAVE + 0*16],xmm6
movdqa [rsp + _XMM_SAVE + 1*16],xmm7
movdqa [rsp + _XMM_SAVE + 2*16],xmm8
movdqa [rsp + _XMM_SAVE + 3*16],xmm9
movdqa [rsp + _XMM_SAVE + 4*16],xmm10
movdqa [rsp + _XMM_SAVE + 5*16],xmm11
movdqa [rsp + _XMM_SAVE + 6*16],xmm12
%endif
shl NUM_BLKS, 6 ; convert to bytes
jz done_hash
add NUM_BLKS, INP ; pointer to end of data
mov [rsp + _INP_END], NUM_BLKS
;; load initial digest
mov a,[4*0 + CTX]
mov b,[4*1 + CTX]
mov c,[4*2 + CTX]
mov d,[4*3 + CTX]
mov e,[4*4 + CTX]
mov f,[4*5 + CTX]
mov g,[4*6 + CTX]
mov h,[4*7 + CTX]
movdqa BYTE_FLIP_MASK, [PSHUFFLE_BYTE_FLIP_MASK wrt rip]
movdqa SHUF_00BA, [_SHUF_00BA wrt rip]
movdqa SHUF_DC00, [_SHUF_DC00 wrt rip]
loop0:
lea TBL,[K256 wrt rip]
;; byte swap first 16 dwords
COPY_XMM_AND_BSWAP X0, [INP + 0*16], BYTE_FLIP_MASK
COPY_XMM_AND_BSWAP X1, [INP + 1*16], BYTE_FLIP_MASK
COPY_XMM_AND_BSWAP X2, [INP + 2*16], BYTE_FLIP_MASK
COPY_XMM_AND_BSWAP X3, [INP + 3*16], BYTE_FLIP_MASK
mov [rsp + _INP], INP
;; schedule 48 input dwords, by doing 3 rounds of 16 each
mov SRND, 3
align 16
loop1:
movdqa XFER, [TBL + 0*16]
paddd XFER, X0
movdqa [rsp + _XFER], XFER
FOUR_ROUNDS_AND_SCHED
movdqa XFER, [TBL + 1*16]
paddd XFER, X0
movdqa [rsp + _XFER], XFER
FOUR_ROUNDS_AND_SCHED
movdqa XFER, [TBL + 2*16]
paddd XFER, X0
movdqa [rsp + _XFER], XFER
FOUR_ROUNDS_AND_SCHED
movdqa XFER, [TBL + 3*16]
paddd XFER, X0
movdqa [rsp + _XFER], XFER
add TBL, 4*16
FOUR_ROUNDS_AND_SCHED
sub SRND, 1
jne loop1
mov SRND, 2
loop2:
paddd X0, [TBL + 0*16]
movdqa [rsp + _XFER], X0
DO_ROUND 0
DO_ROUND 1
DO_ROUND 2
DO_ROUND 3
paddd X1, [TBL + 1*16]
movdqa [rsp + _XFER], X1
add TBL, 2*16
DO_ROUND 0
DO_ROUND 1
DO_ROUND 2
DO_ROUND 3
movdqa X0, X2
movdqa X1, X3
sub SRND, 1
jne loop2
addm [4*0 + CTX],a
addm [4*1 + CTX],b
addm [4*2 + CTX],c
addm [4*3 + CTX],d
addm [4*4 + CTX],e
addm [4*5 + CTX],f
addm [4*6 + CTX],g
addm [4*7 + CTX],h
mov INP, [rsp + _INP]
add INP, 64
cmp INP, [rsp + _INP_END]
jne loop0
done_hash:
%ifndef LINUX
movdqa xmm6,[rsp + _XMM_SAVE + 0*16]
movdqa xmm7,[rsp + _XMM_SAVE + 1*16]
movdqa xmm8,[rsp + _XMM_SAVE + 2*16]
movdqa xmm9,[rsp + _XMM_SAVE + 3*16]
movdqa xmm10,[rsp + _XMM_SAVE + 4*16]
movdqa xmm11,[rsp + _XMM_SAVE + 5*16]
movdqa xmm12,[rsp + _XMM_SAVE + 6*16]
%endif
add rsp, STACK_SIZE
pop r15
pop r14
pop r13
pop rbp
%ifndef LINUX
pop rdi
pop rsi
%endif
pop rbx
ret
section .data
align 64
K256:
dd 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
dd 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
dd 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
dd 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
dd 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
dd 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
dd 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
dd 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
dd 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
dd 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
dd 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
dd 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
dd 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
dd 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
dd 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
dd 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
PSHUFFLE_BYTE_FLIP_MASK: ddq 0x0c0d0e0f08090a0b0405060700010203
; shuffle xBxA -> 00BA
_SHUF_00BA: ddq 0xFFFFFFFFFFFFFFFF0b0a090803020100
; shuffle xDxC -> DC00
_SHUF_DC00: ddq 0x0b0a090803020100FFFFFFFFFFFFFFFF
Loading…
Cancel
Save